These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32872998)

  • 101. The acoustic field on the forehead of echolocating Atlantic bottlenose dolphins (Tursiops truncatus).
    Au WW; Houser DS; Finneran JJ; Lee WJ; Talmadge LA; Moore PW
    J Acoust Soc Am; 2010 Sep; 128(3):1426-34. PubMed ID: 20815476
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Interaural differences in the bottlenose dolphin (Tursiops truncatus) auditory nerve response to jawphone click stimuli.
    Mulsow J; Finneran JJ; Houser DS
    J Acoust Soc Am; 2014 Sep; 136(3):1402. PubMed ID: 25190413
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool.
    Finneran JJ; Schlundt CE
    J Acoust Soc Am; 2007 Jul; 122(1):606-14. PubMed ID: 17614517
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Changes in signal parameters over time for an echolocating Atlantic bottlenose dolphin performing the same target discrimination task.
    Ibsen SD; Au WW; Nachtigall PE; Delong CM; Breese M
    J Acoust Soc Am; 2007 Oct; 122(4):2446-50. PubMed ID: 17902879
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Information-seeking across auditory scenes by an echolocating dolphin.
    Harley HE; Fellner W; Frances C; Thomas A; Losch B; Newton K; Feuerbach D
    Anim Cogn; 2022 Oct; 25(5):1109-1131. PubMed ID: 36018473
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises.
    Au WW; Benoit-Bird KJ; Kastelein RA
    J Acoust Soc Am; 2007 Jun; 121(6):3954-62. PubMed ID: 17552742
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Spatial and temporal variation in the occurrence of bottlenose dolphins in the Chesapeake Bay, USA, using citizen science sighting data.
    Rodriguez LK; Fandel AD; Colbert BR; Testa JC; Bailey H
    PLoS One; 2021; 16(5):e0251637. PubMed ID: 34003849
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Cognitive adaptation of sonar gain control in the bottlenose dolphin.
    Kloepper LN; Smith AB; Nachtigall PE; Buck JR; Simmons JA; Pacini AF
    PLoS One; 2014; 9(8):e105938. PubMed ID: 25153530
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Bottlenose dolphin communication during a role-specialized group foraging task.
    Hamilton RA; Gazda SK; King SL; Starkhammar J; Connor RC
    Behav Processes; 2022 Aug; 200():104691. PubMed ID: 35750114
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Endocrine response to simulated U.S. Navy mid-frequency sonar exposures in the bottlenose dolphin (Tursiops truncatus).
    Houser DS; Martin S; Crocker DE; Finneran JJ
    J Acoust Soc Am; 2020 Mar; 147(3):1681. PubMed ID: 32237823
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Sound localization by the bottlenose porpoise Tursiops truncatus.
    Renaud DL; Popper AN
    J Exp Biol; 1975 Dec; 63(3):569-85. PubMed ID: 1214118
    [TBL] [Abstract][Full Text] [Related]  

  • 112. The gross morphology and histochemistry of respiratory muscles in bottlenose dolphins, Tursiops truncatus.
    Cotten PB; Piscitelli MA; McLellan WA; Rommel SA; Dearolf JL; Pabst DA
    J Morphol; 2008 Dec; 269(12):1520-38. PubMed ID: 18777569
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Dolphins can maintain vigilant behavior through echolocation for 15 days without interruption or cognitive impairment.
    Branstetter BK; Finneran JJ; Fletcher EA; Weisman BC; Ridgway SH
    PLoS One; 2012; 7(10):e47478. PubMed ID: 23082170
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Activity Budget Comparisons Using Long-Term Observations of a Group of Bottlenose Dolphins (
    Huettner T; Dollhaeupl S; Simon R; Baumgartner K; von Fersen L
    Animals (Basel); 2021 Jul; 11(7):. PubMed ID: 34359239
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Separating overlapping echolocation: An updated method for estimating the number of echolocating animals in high background noise levels.
    Hamilton RA; Starkhammar J; Gazda SK; Connor RC
    J Acoust Soc Am; 2021 Aug; 150(2):709. PubMed ID: 34470329
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Aquatic environments change the cardiac morphology of dolphins.
    Kinoshita R; Ebisawa K; Okabayashi K; Narita T; Nakayama S; Koie H
    J Vet Med Sci; 2023 Mar; 85(3):334-339. PubMed ID: 36725029
    [TBL] [Abstract][Full Text] [Related]  

  • 117. A time-series analysis of blood-based biomarkers within a 25-year longitudinal dolphin cohort.
    Rangan AV; McGrouther CC; Bhadra N; Venn-Watson S; Jensen ED; Schork NJ
    PLoS Comput Biol; 2023 Feb; 19(2):e1010890. PubMed ID: 36802395
    [TBL] [Abstract][Full Text] [Related]  

  • 118. A Quieter Ocean: Experimentally Derived Differences in Attentive Responses of
    Stevens PE; Allen V; Bruck JN
    Animals (Basel); 2023 Apr; 13(7):. PubMed ID: 37048525
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Consciousness in dolphins? A review of recent evidence.
    Harley HE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jun; 199(6):565-82. PubMed ID: 23649907
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Deep Non-Line-of-Sight Imaging Using Echolocation.
    Jang S; Shin UH; Kim K
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.