These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32873203)

  • 1. Context-dependent modulation of natural approach behaviour in mice.
    Procacci NM; Allen KM; Robb GE; Ijekah R; Lynam H; Hoy JL
    Proc Biol Sci; 2020 Sep; 287(1934):20201189. PubMed ID: 32873203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual pursuit behavior in mice maintains the pursued prey on the retinal region with least optic flow.
    Holmgren CD; Stahr P; Wallace DJ; Voit KM; Matheson EJ; Sawinski J; Bassetto G; Kerr JN
    Elife; 2021 Oct; 10():. PubMed ID: 34698633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision Drives Accurate Approach Behavior during Prey Capture in Laboratory Mice.
    Hoy JL; Yavorska I; Wehr M; Niell CM
    Curr Biol; 2016 Nov; 26(22):3046-3052. PubMed ID: 27773567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prey capture behavior evoked by simple visual stimuli in larval zebrafish.
    Bianco IH; Kampff AR; Engert F
    Front Syst Neurosci; 2011; 5():101. PubMed ID: 22203793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.
    Trivedi CA; Bollmann JH
    Front Neural Circuits; 2013; 7():86. PubMed ID: 23675322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left hemispatial neglect and overt orienting in naturalistic conditions: Role of high-level and stimulus-driven signals.
    Nardo D; De Luca M; Rotondaro F; Spanò B; Bozzali M; Doricchi F; Paolucci S; Macaluso E
    Cortex; 2019 Apr; 113():329-346. PubMed ID: 30735844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visuo-spatial orienting during active exploratory behavior: Processing of task-related and stimulus-related signals.
    Macaluso E; Ogawa A
    Cortex; 2018 May; 102():26-44. PubMed ID: 28942896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defined Cell Types in Superior Colliculus Make Distinct Contributions to Prey Capture Behavior in the Mouse.
    Hoy JL; Bishop HI; Niell CM
    Curr Biol; 2019 Dec; 29(23):4130-4138.e5. PubMed ID: 31761701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid stimulus-driven modulation of slow ocular position drifts.
    Malevich T; Buonocore A; Hafed ZM
    Elife; 2020 Aug; 9():. PubMed ID: 32758358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of gaze control during prey capture in freely moving mice.
    Michaiel AM; Abe ET; Niell CM
    Elife; 2020 Jul; 9():. PubMed ID: 32706335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical Salience and Value-Driven Salience Operate through Different Neural Mechanisms to Enhance Attentional Selection.
    Bachman MD; Wang L; Gamble ML; Woldorff MG
    J Neurosci; 2020 Jul; 40(28):5455-5464. PubMed ID: 32471878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial orienting in complex audiovisual environments.
    Nardo D; Santangelo V; Macaluso E
    Hum Brain Mapp; 2014 Apr; 35(4):1597-614. PubMed ID: 23616340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of stimulus features on the visual orienting behaviour of the salamander Plethodon jordani.
    Schülert N; Dicke U
    J Exp Biol; 2002 Jan; 205(Pt 2):241-51. PubMed ID: 11821490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved fidelity of orientation perception: a learning effect dissociable from enhanced discriminability.
    Zhang E; Li W
    Sci Rep; 2020 Apr; 10(1):6572. PubMed ID: 32313001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valence, Not Utility, Underlies Reward-Driven Prioritization in Human Vision.
    Barbaro L; Peelen MV; Hickey C
    J Neurosci; 2017 Oct; 37(43):10438-10450. PubMed ID: 28951452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. History Modulates Early Sensory Processing of Salient Distractors.
    Adam KCS; Serences JT
    J Neurosci; 2021 Sep; 41(38):8007-8022. PubMed ID: 34330776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus-driven visual attention in mice.
    Goldstein S; Wang L; McAlonan K; Torres-Cruz M; Krauzlis RJ
    J Vis; 2022 Jan; 22(1):11. PubMed ID: 35044435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopaminergic modulation of visual responses in toads. I. Apomorphine-induced effects on visually directed appetitive and consummatory prey-catching behavior.
    Glagow M; Ewert JP
    J Comp Physiol A; 1997 Jan; 180(1):1-9. PubMed ID: 9008365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees.
    Van De Poll MN; Zajaczkowski EL; Taylor GJ; Srinivasan MV; van Swinderen B
    J Exp Biol; 2015 Nov; 218(Pt 21):3448-60. PubMed ID: 26347568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressive Control of Incentive Salience in Real-World Human Vision.
    Hickey C; Acunzo D; Dell J
    J Neurosci; 2023 Sep; 43(37):6415-6429. PubMed ID: 37562963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.