These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32873384)

  • 1. A method for forensic gasoline comparison in fire debris samples: A numerical likelihood ratio system.
    Vergeer P; Hendrikse JN; Grutters MMP; Peschier LJC
    Sci Justice; 2020 Sep; 60(5):438-450. PubMed ID: 32873384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes.
    Bogdal C; Schellenberg R; Höpli O; Bovens M; Lory M
    Forensic Sci Int; 2022 Feb; 331():111146. PubMed ID: 34968789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Likelihood ratio methods for forensic comparison of evaporated gasoline residues.
    Vergeer P; Bolck A; Peschier LJ; Berger CE; Hendrikse JN
    Sci Justice; 2014 Dec; 54(6):401-11. PubMed ID: 25498926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evaluation of the extent of transporting or "tracking" an identifiable ignitable liquid (gasoline) throughout fire scenes during the investigative process.
    Armstrong A; Babrauskas V; Holmes DL; Martin C; Powell R; Riggs S; Young LD
    J Forensic Sci; 2004 Jul; 49(4):741-8. PubMed ID: 15317188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network.
    Bogdal C; Schellenberg R; Lory M; Bovens M; Höpli O
    Forensic Sci Int; 2022 Mar; 332():111177. PubMed ID: 35065332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Alkylate Components for Classifying Gasoline in Fire Debris Samples.
    Peschier LJC; Grutters MMP; Hendrikse JN
    J Forensic Sci; 2018 Mar; 63(2):420-430. PubMed ID: 28556928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fire Size of Gasoline Pool Fires.
    Marková I; Lauko J; Makovická Osvaldová L; Mózer V; Svetlík J; Monoši M; Orinčák M
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31936275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The most remarkable interference to gasoline identification from polystyrene-co-butadiene and the corresponding cause.
    Jin J; Li K; Chi J; Li S; Zhang J; Lu L
    J Chromatogr A; 2021 Sep; 1654():462462. PubMed ID: 34411835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemometric classification of casework arson samples based on gasoline content.
    Sinkov NA; Sandercock PM; Harynuk JJ
    Forensic Sci Int; 2014 Feb; 235():24-31. PubMed ID: 24447448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of arson fire debris by low temperature dynamic headspace adsorption porous layer open tubular columns.
    Nichols JE; Harries ME; Lovestead TM; Bruno TJ
    J Chromatogr A; 2014 Mar; 1334():126-38. PubMed ID: 24569007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate interferences in identifying flammable liquids in food, environmental and biological samples: case studies.
    Borusiewicz R
    Sci Justice; 2015 May; 55(3):176-80. PubMed ID: 25934369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of thermal environment in fire on the identification of gasoline combustion residues.
    Jin J; Chi J; Xue T; Xu J; Liu L; Li Y; Deng L; Zhang J
    Forensic Sci Int; 2020 Oct; 315():110430. PubMed ID: 32738673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of gasolines using gas chromatography-mass spectrometry and target ion response.
    Barnes AT; Dolan JA; Kuk RJ; Siegel JA
    J Forensic Sci; 2004 Sep; 49(5):1018-23. PubMed ID: 15461104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.
    McGee E; Lang TL
    J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of arson fires on survivability of entomological evidence on carcasses inside vehicle trunks.
    Malainey SL; Anderson GS
    Forensic Sci Int; 2020 Jan; 306():110033. PubMed ID: 31812085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of season and soil type on microbial degradation of gasoline residues from incendiary devices.
    Turner DA; Goodpaster JV
    Anal Bioanal Chem; 2013 Feb; 405(5):1593-9. PubMed ID: 23241819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forced double suicide by fire revealed by autopsy and toxicological examination: a case report.
    Kinoshita H; Ijiri I; Ameno S; Fuke C; Tanaka N; Kubota T; Tsujinaka M; Ameno K
    Nihon Hoigaku Zasshi; 1997 Dec; 51(6):457-61. PubMed ID: 9545762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential dangers of accelerant use in arson.
    Heath K; Kobus H; Byard RW
    J Forensic Leg Med; 2011 Feb; 18(2):49-51. PubMed ID: 21315296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gasoline on hands: preliminary study on collection and persistence.
    Darrer M; Jacquemet-Papilloud J; Delémont O
    Forensic Sci Int; 2008 Mar; 175(2-3):171-8. PubMed ID: 17714900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.