BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 32873579)

  • 1. p53 tetramerization: at the center of the dominant-negative effect of mutant p53.
    Gencel-Augusto J; Lozano G
    Genes Dev; 2020 Sep; 34(17-18):1128-1146. PubMed ID: 32873579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency.
    Rigoli M; Spagnolli G; Lorengo G; Monti P; Potestio R; Biasini E; Inga A
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of tetramerization in p53 function.
    Chène P
    Oncogene; 2001 May; 20(21):2611-7. PubMed ID: 11420672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An engineered four-stranded coiled coil substitutes for the tetramerization domain of wild-type p53 and alleviates transdominant inhibition by tumor-derived p53 mutants.
    Waterman MJ; Waterman JL; Halazonetis TD
    Cancer Res; 1996 Jan; 56(1):158-63. PubMed ID: 8548757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of p53 protein function through alterations in protein-folding pathways.
    Hupp TR
    Cell Mol Life Sci; 1999 Jan; 55(1):88-95. PubMed ID: 10065154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a new cancer-associated mutant of p53 with a missense mutation (K351N) in the tetramerization domain.
    Muscolini M; Montagni E; Caristi S; Nomura T; Kamada R; Di Agostino S; Corazzari M; Piacentini M; Blandino G; Costanzo A; Sakaguchi K; Tuosto L
    Cell Cycle; 2009 Oct; 8(20):3396-405. PubMed ID: 19806023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Transactivation Domains of the p53 Protein.
    Raj N; Attardi LD
    Cold Spring Harb Perspect Med; 2017 Jan; 7(1):. PubMed ID: 27864306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous Leu332Gln mutation in p53 disrupts the tetramerization ability in a canine mammary gland tumor cell line.
    Ochiai K; Azakami D; Morimatsu M; Hirama H; Kawakami S; Nakagawa T; Michishita M; Egusa AS; Sasaki T; Watanabe M; Omi T
    Oncol Rep; 2018 Jul; 40(1):488-494. PubMed ID: 29750295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function.
    de Vries A; Flores ER; Miranda B; Hsieh HM; van Oostrom CT; Sage J; Jacks T
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2948-53. PubMed ID: 11867759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of p53 mutants identified in human tumors with a missense mutation in the tetramerization domain.
    Rollenhagen C; Chène P
    Int J Cancer; 1998 Oct; 78(3):372-6. PubMed ID: 9766574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutant p53 accumulation in human breast cancer is not an intrinsic property or dependent on structural or functional disruption but is regulated by exogenous stress and receptor status.
    Bouchalova P; Nenutil R; Muller P; Hrstka R; Appleyard MV; Murray K; Jordan LB; Purdie CA; Quinlan P; Thompson AM; Vojtesek B; Coates PJ
    J Pathol; 2014 Jul; 233(3):238-46. PubMed ID: 24687952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dominant-negative interplay between p53, p63 and p73: A family affair.
    Billant O; Léon A; Le Guellec S; Friocourt G; Blondel M; Voisset C
    Oncotarget; 2016 Oct; 7(43):69549-69564. PubMed ID: 27589690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro analysis of the dominant negative effect of p53 mutants.
    Chène P
    J Mol Biol; 1998 Aug; 281(2):205-9. PubMed ID: 9698540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of p53 oligomers: Tetramerization of p53 impinges on its stability.
    Luwang JW; Nair AR; Natesh R
    Biochimie; 2021 Oct; 189():99-107. PubMed ID: 34197865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific DNA binding by different classes of human p53 mutants.
    Rolley N; Butcher S; Milner J
    Oncogene; 1995 Aug; 11(4):763-70. PubMed ID: 7651740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraslow oligomerization equilibria of p53 and its implications.
    Natan E; Hirschberg D; Morgner N; Robinson CV; Fersht AR
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14327-32. PubMed ID: 19667193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysines in the tetramerization domain of p53 selectively modulate G1 arrest.
    Beckerman R; Yoh K; Mattia-Sansobrino M; Zupnick A; Laptenko O; Karni-Schmidt O; Ahn J; Byeon IJ; Keezer S; Prives C
    Cell Cycle; 2016 Jun; 15(11):1425-38. PubMed ID: 27210019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of beta-catenin-mediated TCF-signalling in prostate cancer cell lines by wild-type and mutant p53.
    Prowald A; Cronauer MV; von Klot C; Eilers T; Rinnab L; Herrmann T; Spindler KD; Montenarh M; Jonas U; Burchardt M
    Prostate; 2007 Dec; 67(16):1751-60. PubMed ID: 17929268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53-p73 cross-talk in vivo.
    Concin N; Hofstetter G; Berger A; Gehmacher A; Reimer D; Watrowski R; Tong D; Schuster E; Hefler L; Heim K; Mueller-Holzner E; Marth C; Moll UM; Zeimet AG; Zeillinger R
    Clin Cancer Res; 2005 Dec; 11(23):8372-83. PubMed ID: 16322298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.