BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32873648)

  • 1. POLQ suppresses interhomolog recombination and loss of heterozygosity at targeted DNA breaks.
    Davis L; Khoo KJ; Zhang Y; Maizels N
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22900-22909. PubMed ID: 32873648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens.
    Mara K; Charlot F; Guyon-Debast A; Schaefer DG; Collonnier C; Grelon M; Nogué F
    New Phytol; 2019 May; 222(3):1380-1391. PubMed ID: 30636294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA polymerase θ (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse.
    Wang Z; Song Y; Li S; Kurian S; Xiang R; Chiba T; Wu X
    J Biol Chem; 2019 Mar; 294(11):3909-3919. PubMed ID: 30655289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells.
    Schimmel J; Kool H; van Schendel R; Tijsterman M
    EMBO J; 2017 Dec; 36(24):3634-3649. PubMed ID: 29079701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair.
    Davis L; Maizels N
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):E924-32. PubMed ID: 24556991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
    Nakajima K; Zhou Y; Tomita A; Hirade Y; Gurumurthy CB; Nakada S
    Genome Res; 2018 Feb; 28(2):223-230. PubMed ID: 29273627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination.
    Mateos-Gomez PA; Gong F; Nair N; Miller KM; Lazzerini-Denchi E; Sfeir A
    Nature; 2015 Feb; 518(7538):254-7. PubMed ID: 25642960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting.
    Sizova I; Kelterborn S; Verbenko V; Kateriya S; Hegemann P
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33836052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response.
    Kelso AA; Lopezcolorado FW; Bhargava R; Stark JM
    PLoS Genet; 2019 Aug; 15(8):e1008319. PubMed ID: 31381562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allele-specific genome editing using CRISPR-Cas9 is associated with loss of heterozygosity in diploid yeast.
    Gorter de Vries AR; Couwenberg LGF; van den Broek M; de la Torre Cortés P; Ter Horst J; Pronk JT; Daran JG
    Nucleic Acids Res; 2019 Feb; 47(3):1362-1372. PubMed ID: 30517747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.
    Yousefzadeh MJ; Wyatt DW; Takata K; Mu Y; Hensley SC; Tomida J; Bylund GO; Doublié S; Johansson E; Ramsden DA; McBride KM; Wood RD
    PLoS Genet; 2014 Oct; 10(10):e1004654. PubMed ID: 25275444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase Θ is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis.
    van Schendel R; Roerink SF; Portegijs V; van den Heuvel S; Tijsterman M
    Nat Commun; 2015 Jun; 6():7394. PubMed ID: 26077599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
    Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL
    Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interhomolog Homologous Recombination in Mouse Embryonic Stem Cells.
    Vanoli F; Prakash R; White T; Jasin M
    Methods Mol Biol; 2021; 2153():127-143. PubMed ID: 32840777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Distinct Pathways Support Gene Correction by Single-Stranded Donors at DNA Nicks.
    Davis L; Maizels N
    Cell Rep; 2016 Nov; 17(7):1872-1881. PubMed ID: 27829157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathways and signatures of mutagenesis at targeted DNA nicks.
    Zhang Y; Davis L; Maizels N
    PLoS Genet; 2021 Apr; 17(4):e1009329. PubMed ID: 33857147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic determinants of cellular addiction to DNA polymerase theta.
    Feng W; Simpson DA; Carvajal-Garcia J; Price BA; Kumar RJ; Mose LE; Wood RD; Rashid N; Purvis JE; Parker JS; Ramsden DA; Gupta GP
    Nat Commun; 2019 Sep; 10(1):4286. PubMed ID: 31537809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.