These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 32873651)
1. Dark noise and retinal degeneration from D190N-rhodopsin. Silverman D; Chai Z; Yue WWS; Ramisetty SK; Bekshe Lokappa S; Sakai K; Frederiksen R; Bina P; Tsang SH; Yamashita T; Chen J; Yau KW Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23033-23043. PubMed ID: 32873651 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of neurodegeneration in a preclinical autosomal dominant retinitis pigmentosa knock-in model with a Rho Sancho-Pelluz J; Cui X; Lee W; Tsai YT; Wu WH; Justus S; Washington I; Hsu CW; Park KS; Koch S; Velez G; Bassuk AG; Mahajan VB; Lin CS; Tsang SH Cell Mol Life Sci; 2019 Sep; 76(18):3657-3665. PubMed ID: 30976840 [TBL] [Abstract][Full Text] [Related]
3. Mice with a D190N mutation in the gene encoding rhodopsin: a model for human autosomal-dominant retinitis pigmentosa. Sancho-Pelluz J; Tosi J; Hsu CW; Lee F; Wolpert K; Tabacaru MR; Greenberg JP; Tsang SH; Lin CS Mol Med; 2012 May; 18(1):549-55. PubMed ID: 22252712 [TBL] [Abstract][Full Text] [Related]
4. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Liu X; Jia R; Meng X; Li Y; Yang L Exp Eye Res; 2022 Feb; 215():108893. PubMed ID: 34919893 [TBL] [Abstract][Full Text] [Related]
5. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
6. Dark continuous noise from mutant G90D-rhodopsin predominantly underlies congenital stationary night blindness. Chai Z; Ye Y; Silverman D; Rose K; Madura A; Reed RR; Chen J; Yau KW Proc Natl Acad Sci U S A; 2024 May; 121(21):e2404763121. PubMed ID: 38743626 [TBL] [Abstract][Full Text] [Related]
7. Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants. Liu MY; Liu J; Mehrotra D; Liu Y; Guo Y; Baldera-Aguayo PA; Mooney VL; Nour AM; Yan EC J Biol Chem; 2013 Jun; 288(24):17698-712. PubMed ID: 23625926 [TBL] [Abstract][Full Text] [Related]
8. ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model. Lee EJ; Chan P; Chea L; Kim K; Kaufman RJ; Lin JH Sci Rep; 2021 Aug; 11(1):16356. PubMed ID: 34381136 [TBL] [Abstract][Full Text] [Related]
9. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K Hum Mol Genet; 2014 Apr; 23(7):1723-41. PubMed ID: 24214395 [TBL] [Abstract][Full Text] [Related]
10. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa. Orlans HO; Barnard AR; MacLaren RE Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293 [TBL] [Abstract][Full Text] [Related]
11. Rhodopsin signaling mediates light-induced photoreceptor cell death in rd10 mice through a transducin-independent mechanism. Sundar JC; Munezero D; Bryan-Haring C; Saravanan T; Jacques A; Ramamurthy V Hum Mol Genet; 2020 Feb; 29(3):394-406. PubMed ID: 31925423 [TBL] [Abstract][Full Text] [Related]
12. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. Takita S; Jahan S; S Imanishi S; Harikrishnan H; LePage D; Mann RJ; Conlon RA; Miyagi M; Imanishi Y FASEB J; 2024 Apr; 38(8):e23606. PubMed ID: 38648465 [TBL] [Abstract][Full Text] [Related]
13. Transport of truncated rhodopsin and its effects on rod function and degeneration. Lee ES; Flannery JG Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2868-76. PubMed ID: 17525223 [TBL] [Abstract][Full Text] [Related]
15. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa. Bogéa TH; Wen RH; Moritz OL Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441 [TBL] [Abstract][Full Text] [Related]
16. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Tam BM; Moritz OL Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386 [TBL] [Abstract][Full Text] [Related]
17. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. Robichaux MA; Nguyen V; Chan F; Kailasam L; He F; Wilson JH; Wensel TG Dis Model Mech; 2022 May; 15(5):. PubMed ID: 35275162 [TBL] [Abstract][Full Text] [Related]
18. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Orlans HO; Barnard AR; Patrício MI; McClements ME; MacLaren RE Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751 [TBL] [Abstract][Full Text] [Related]
19. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration. Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724 [TBL] [Abstract][Full Text] [Related]
20. Long-term vitamin A supplementation in a preclinical mouse model for RhoD190N-associated retinitis pigmentosa. Cui X; Kim HJ; Cheng CH; Jenny LA; Lima de Carvalho JR; Chang YJ; Kong Y; Hsu CW; Huang IW; Ragi SD; Lin CS; Li X; Sparrow JR; Tsang SH Hum Mol Genet; 2022 Jul; 31(14):2438-2451. PubMed ID: 35195241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]