These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 32874175)
1. Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines. Tian J; He Q; Oliveira C; Qian Y; Egan S; Xu J; Qian NX; Langsdorf E; Warrack B; Aranibar N; Reily M; Borys M; Li ZJ Eng Life Sci; 2020 Mar; 20(3-4):112-125. PubMed ID: 32874175 [TBL] [Abstract][Full Text] [Related]
2. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. Lin PC; Chan KF; Kiess IA; Tan J; Shahreel W; Wong SY; Song Z MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114 [TBL] [Abstract][Full Text] [Related]
3. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis. Feary M; Racher AJ; Young RJ; Smales CM Biotechnol Prog; 2017 Jan; 33(1):17-25. PubMed ID: 27689785 [TBL] [Abstract][Full Text] [Related]
4. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies. Noh SM; Shin S; Lee GM Sci Rep; 2018 Mar; 8(1):5361. PubMed ID: 29599455 [TBL] [Abstract][Full Text] [Related]
6. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266 [TBL] [Abstract][Full Text] [Related]
7. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Sacco SA; Tuckowski AM; Trenary I; Kraft L; Betenbaugh MJ; Young JD; Smith KD Biotechnol Bioeng; 2022 Jul; 119(7):1712-1727. PubMed ID: 35312045 [TBL] [Abstract][Full Text] [Related]
8. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance. Yu DY; Noh SM; Lee GM J Biotechnol; 2016 Aug; 231():136-140. PubMed ID: 27288593 [TBL] [Abstract][Full Text] [Related]
9. Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Jun SC; Kim MS; Hong HJ; Lee GM Biotechnol Prog; 2006; 22(3):770-80. PubMed ID: 16739961 [TBL] [Abstract][Full Text] [Related]
10. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. Yongky A; Xu J; Tian J; Oliveira C; Zhao J; McFarland K; Borys MC; Li ZJ MAbs; 2019; 11(8):1502-1514. PubMed ID: 31379298 [TBL] [Abstract][Full Text] [Related]
11. Supplementation of Nucleosides During Selection can Reduce Sequence Variant Levels in CHO Cells Using GS/MSX Selection System. Tang D; Lam C; Louie S; Hoi KH; Shaw D; Yim M; Snedecor B; Misaghi S Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28745430 [TBL] [Abstract][Full Text] [Related]
12. Short- and long-term effects on mAb-producing CHO cell lines after cryopreservation. Subramanian J; Aulakh RPS; Grewal PS; Sanford M; Pynn AFJ; Yuk IH Biotechnol Prog; 2018 Mar; 34(2):463-477. PubMed ID: 29314708 [TBL] [Abstract][Full Text] [Related]
13. An attempt to add biological functions by genetic engineering in order to produce high-performance bioreactor cells for hybrid artificial liver: transfection of glutamine synthetase into Chinese hamster ovary (CHO) cell. Enosawa S; Suzuki S; Fujino M; Amemiya H; Omasa T; Urayama S; Tanimura N; Suga K Cell Transplant; 1997; 6(5):537-40. PubMed ID: 9331509 [TBL] [Abstract][Full Text] [Related]
14. Derivation and characterization of cholesterol-independent non-GS NS0 cell lines for production of recombinant antibodies. Hartman TE; Sar N; Genereux K; Barritt DS; He Y; Burky JE; Wesson MC; Tso JY; Tsurushita N; Zhou W; Sauer PW Biotechnol Bioeng; 2007 Feb; 96(2):294-306. PubMed ID: 16897745 [TBL] [Abstract][Full Text] [Related]
15. Development of transfection and high-producer screening protocols for the CHOK1SV cell system. de la Cruz Edmonds MC; Tellers M; Chan C; Salmon P; Robinson DK; Markusen J Mol Biotechnol; 2006 Oct; 34(2):179-90. PubMed ID: 17172663 [TBL] [Abstract][Full Text] [Related]
16. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369 [TBL] [Abstract][Full Text] [Related]
17. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Yang WC; Lu J; Kwiatkowski C; Yuan H; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2014; 30(3):616-25. PubMed ID: 24574326 [TBL] [Abstract][Full Text] [Related]
18. Automation of cell line development. Lindgren K; Salmén A; Lundgren M; Bylund L; Ebler A; Fäldt E; Sörvik L; Fenge C; Skoging-Nyberg U Cytotechnology; 2009 Jan; 59(1):1-10. PubMed ID: 19306069 [TBL] [Abstract][Full Text] [Related]
19. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies. Yu DY; Lee SY; Lee GM Biotechnol Bioeng; 2018 May; 115(5):1367-1372. PubMed ID: 29359789 [TBL] [Abstract][Full Text] [Related]
20. Glutamine synthetase (GS) knockout (KO) using CRISPR/Cpf1 diversely enhances selection efficiency of CHO cells expressing therapeutic antibodies. Srila W; Baumann M; Riedl M; Rangnoi K; Borth N; Yamabhai M Sci Rep; 2023 Jun; 13(1):10473. PubMed ID: 37380701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]