BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32874348)

  • 1. pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide.
    Ghosh G; Fernández G
    Beilstein J Org Chem; 2020; 16():2017-2025. PubMed ID: 32874348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Responsive Biocompatible Supramolecular Peptide Hydrogel.
    Ghosh G; Barman R; Sarkar J; Ghosh S
    J Phys Chem B; 2019 Jul; 123(27):5909-5915. PubMed ID: 31246033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control over Multiple Nano- and Secondary Structures in Peptide Self-Assembly.
    Ghosh G; Barman R; Mukherjee A; Ghosh U; Ghosh S; Fernández G
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202113403. PubMed ID: 34758508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-responsive self-assembling peptides made from antibacterial peptides.
    Liu Y; Yang Y; Wang C; Zhao X
    Nanoscale; 2013 Jul; 5(14):6413-21. PubMed ID: 23739953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity.
    Baumann MK; Textor M; Reimhult E
    Langmuir; 2008 Aug; 24(15):7645-7. PubMed ID: 18597507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures.
    Zhong J; Ma M; Li W; Zhou J; Yan Z; He D
    Biopolymers; 2014 Dec; 101(12):1181-92. PubMed ID: 25088327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks.
    Hiew SH; Guerette PA; Zvarec OJ; Phillips M; Zhou F; Su H; Pervushin K; Orner BP; Miserez A
    Acta Biomater; 2016 Dec; 46():41-54. PubMed ID: 27693688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled self-assembly of amphiphilic oligopeptides into shape-specific nanoarchitectures.
    Koga T; Higuchi M; Kinoshita T; Higashi N
    Chemistry; 2006 Feb; 12(5):1360-7. PubMed ID: 16163755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse morphologies of self-assemblies from homoditopic 1,18-nucleotide-appended bolaamphiphiles: effects of nucleobases and complementary oligonucleotides.
    Iwaura R; Iizawa T; Minamikawa H; Ohnishi-Kameyama M; Shimizu T
    Small; 2010 May; 6(10):1131-9. PubMed ID: 20449848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular dichroism and Fourier transform infrared spectroscopic studies on self-assembly of tetrapeptide derivative in solution and solvated film.
    Ganesh S; Jayakumar R
    J Pept Res; 2003 Mar; 61(3):122-8. PubMed ID: 12558947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PH-dependent self-assembly of the short Surfactant-like peptide KA6.
    Gurevich L; Poulsen TW; Andersen OZ; Kildeby NL; Fojan P
    J Nanosci Nanotechnol; 2010 Dec; 10(12):7946-50. PubMed ID: 21121281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous construction of nanoperiodic architecture by two-dimensional self-assembly of an amphiphilic peptide-polyethylene glycol conjugate at the solid/water interface.
    Tanaka M; Abiko S; Koshikawa N; Katsuta M; Kinoshita T
    J Colloid Interface Sci; 2014 Mar; 417():137-43. PubMed ID: 24407669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of a peptide sequence, EKKE, composed of exclusively charged amino acids: Role of charge in morphology and lead binding.
    Natarajan A; Rangan K; Vadrevu R
    J Pept Sci; 2023 Feb; 29(2):e3451. PubMed ID: 36098076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology of self-assembled structures formed by short peptides from the amyloidogenic protein tau depends on the solvent in which the peptides are dissolved.
    Chaudhary N; Singh S; Nagaraj R
    J Pept Sci; 2009 Oct; 15(10):675-84. PubMed ID: 19714684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Physical Properties and Self-Assembly Potential of the RFFFR Peptide.
    Slyngborg M; Nielsen DA; Fojan P
    Chembiochem; 2016 Nov; 17(21):2083-2092. PubMed ID: 27581944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein interactions and misfolding analyzed by AFM force spectroscopy.
    McAllister C; Karymov MA; Kawano Y; Lushnikov AY; Mikheikin A; Uversky VN; Lyubchenko YL
    J Mol Biol; 2005 Dec; 354(5):1028-42. PubMed ID: 16290901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure.
    Bañares-Hidalgo A; Pérez-Gil J; Estrada P
    Biochim Biophys Acta; 2014 Jul; 1838(7):1738-51. PubMed ID: 24704177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.