These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32874602)

  • 21. Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal.
    Brittman S; Gao H; Garnett EC; Yang P
    Nano Lett; 2011 Dec; 11(12):5189-95. PubMed ID: 22082022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles.
    Spinelli P; Polman A
    Opt Express; 2012 Sep; 20 Suppl 5():A641-54. PubMed ID: 23037531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Ag Nanostructure Location on the Absorption Enhancement in Polymer Solar Cells.
    Nair AT; Palappra SP; Reddy VS
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32483-32491. PubMed ID: 30168314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in organic solar cells.
    Liu X; Wu B; Zhang Q; Yip JN; Yu G; Xiong Q; Mathews N; Sum TC
    ACS Nano; 2014 Oct; 8(10):10101-10. PubMed ID: 25198060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a plasmonic back reflector for silicon nanowire decorated solar cells.
    Ren R; Guo Y; Zhu R
    Opt Lett; 2012 Oct; 37(20):4245-7. PubMed ID: 23073425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full-band absorption enhancement in ultrathin-film solar cells through the excitation of multiresonant guided modes.
    Shi L; Zhou Z; Tang B
    Appl Opt; 2012 May; 51(13):2436-40. PubMed ID: 22614423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Ultrasensitive Gateless Photodetector Based on the 2D Bilayer MoS
    Mao CH; Dubey A; Lee FJ; Chen CY; Tang SY; Ranjan A; Lu MY; Chueh YL; Gwo S; Yen TJ
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4126-4132. PubMed ID: 33432802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells.
    Yu P; Yao Y; Wu J; Niu X; Rogach AL; Wang Z
    Sci Rep; 2017 Aug; 7(1):7696. PubMed ID: 28794487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geometrical optimisation of core-shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells.
    Vismara R; Isabella O; Ingenito A; Si FT; Zeman M
    Beilstein J Nanotechnol; 2019; 10():322-331. PubMed ID: 30800571
    [No Abstract]   [Full Text] [Related]  

  • 31. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays.
    Liu D; Yang D; Gao Y; Ma J; Long R; Wang C; Xiong Y
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4577-81. PubMed ID: 26929103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.
    Nie KY; Li J; Chen X; Xu Y; Tu X; Ren FF; Du Q; Fu L; Kang L; Tang K; Gu S; Zhang R; Wu P; Zheng Y; Tan HH; Jagadish C; Ye J
    Sci Rep; 2017 Aug; 7(1):7503. PubMed ID: 28790363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Vinogradova E; Ayon AA
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15472-9. PubMed ID: 25137194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices.
    Nowzari A; Heurlin M; Jain V; Storm K; Hosseinnia A; Anttu N; Borgström MT; Pettersson H; Samuelson L
    Nano Lett; 2015 Mar; 15(3):1809-14. PubMed ID: 25671437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical properties of crystalline-amorphous core-shell silicon nanowires.
    Adachi MM; Anantram MP; Karim KS
    Nano Lett; 2010 Oct; 10(10):4093-8. PubMed ID: 20815406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index.
    Yue Z; Cai B; Wang L; Wang X; Gu M
    Sci Adv; 2016 Mar; 2(3):e1501536. PubMed ID: 27051869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FDTD modeling of solar energy absorption in silicon branched nanowires.
    Lundgren C; Lopez R; Redwing J; Melde K
    Opt Express; 2013 May; 21 Suppl 3():A392-400. PubMed ID: 24104426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light harvesting of silicon nanostructure for solar cells application.
    Li Y; Yue L; Luo Y; Liu W; Li M
    Opt Express; 2016 Jul; 24(14):A1075-82. PubMed ID: 27410895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.