These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32874685)

  • 1. Skin Diseases Classification Using Deep Leaning Methods.
    UdriȘtoiu AL; Stanca AE; Ghenea AE; Vasile CM; Popescu M; UdriȘtoiu ȘC; Iacob AV; Castravete S; Gruionu LG; Gruionu G
    Curr Health Sci J; 2020; 46(2):136-140. PubMed ID: 32874685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk-Aware Machine Learning Classifier for Skin Lesion Diagnosis.
    Mobiny A; Singh A; Van Nguyen H
    J Clin Med; 2019 Aug; 8(8):. PubMed ID: 31426482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dermatologist-level classification of skin cancer with deep neural networks.
    Esteva A; Kuprel B; Novoa RA; Ko J; Swetter SM; Blau HM; Thrun S
    Nature; 2017 Feb; 542(7639):115-118. PubMed ID: 28117445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Learning Approach to Skin Cancer Detection in Dermoscopy Images.
    A A
    J Biomed Phys Eng; 2020 Dec; 10(6):801-806. PubMed ID: 33364218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population.
    Wang SQ; Zhang XY; Liu J; Tao C; Zhu CY; Shu C; Xu T; Jin HZ
    Chin Med J (Engl); 2020 Sep; 133(17):2027-2036. PubMed ID: 32826613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm.
    Han SS; Kim MS; Lim W; Park GH; Park I; Chang SE
    J Invest Dermatol; 2018 Jul; 138(7):1529-1538. PubMed ID: 29428356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approach to the dermatological classification of histopathological skin images using a hybridized CNN-DenseNet model.
    De A; Mishra N; Chang HT
    PeerJ Comput Sci; 2024; 10():e1884. PubMed ID: 38435616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusing fine-tuned deep features for skin lesion classification.
    Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C
    Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study.
    Tschandl P; Codella N; Akay BN; Argenziano G; Braun RP; Cabo H; Gutman D; Halpern A; Helba B; Hofmann-Wellenhof R; Lallas A; Lapins J; Longo C; Malvehy J; Marchetti MA; Marghoob A; Menzies S; Oakley A; Paoli J; Puig S; Rinner C; Rosendahl C; Scope A; Sinz C; Soyer HP; Thomas L; Zalaudek I; Kittler H
    Lancet Oncol; 2019 Jul; 20(7):938-947. PubMed ID: 31201137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework.
    Ali MU; Khalid M; Alshanbari H; Zafar A; Lee SW
    Bioengineering (Basel); 2023 Dec; 10(12):. PubMed ID: 38136020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skin Lesion Classification Using Additional Patient Information.
    Sun Q; Huang C; Chen M; Xu H; Yang Y
    Biomed Res Int; 2021; 2021():6673852. PubMed ID: 33937410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition.
    Winkler JK; Fink C; Toberer F; Enk A; Deinlein T; Hofmann-Wellenhof R; Thomas L; Lallas A; Blum A; Stolz W; Haenssle HA
    JAMA Dermatol; 2019 Oct; 155(10):1135-1141. PubMed ID: 31411641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Learning Based Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment.
    Zhu CY; Wang YK; Chen HP; Gao KL; Shu C; Wang JC; Yan LF; Yang YG; Xie FY; Liu J
    Front Med (Lausanne); 2021; 8():626369. PubMed ID: 33937279
    [No Abstract]   [Full Text] [Related]  

  • 15. Computer Aided Diagnosis of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions.
    Foahom Gouabou AC; Collenne J; Monnier J; Iguernaissi R; Damoiseaux JL; Moudafi A; Merad D
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of a Smartphone-Based Artificial Intelligence Application for Classification of Melanomas, Melanocytic Nevi, and Seborrheic Keratoses.
    Liutkus J; Kriukas A; Stragyte D; Mazeika E; Raudonis V; Galetzka W; Stang A; Valiukeviciene S
    Diagnostics (Basel); 2023 Jun; 13(13):. PubMed ID: 37443533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and validation of a new machine-learning-based diagnostic tool for the differentiation of dermatoscopic skin cancer images.
    Tajerian A; Kazemian M; Tajerian M; Akhavan Malayeri A
    PLoS One; 2023; 18(4):e0284437. PubMed ID: 37058446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of melanoma from benign mimics using the relative-color method.
    LeAnder R; Chindam P; Das M; Umbaugh SE
    Skin Res Technol; 2010 Aug; 16(3):297-304. PubMed ID: 20636998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists.
    Yang Y; Wang J; Xie F; Liu J; Shu C; Wang Y; Zheng Y; Zhang H
    Comput Biol Med; 2021 Dec; 139():104924. PubMed ID: 34688173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.