BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32875167)

  • 1. Glycation and Serum Albumin Infiltration Contribute to the Structural Degeneration of Bioprosthetic Heart Valves.
    Frasca A; Xue Y; Kossar AP; Keeney S; Rock C; Zakharchenko A; Streeter M; Gorman RC; Grau JB; George I; Bavaria JE; Krieger A; Spiegel DA; Levy RJ; Ferrari G
    JACC Basic Transl Sci; 2020 Aug; 5(8):755-766. PubMed ID: 32875167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncalcific Mechanisms of Bioprosthetic Structural Valve Degeneration.
    Marro M; Kossar AP; Xue Y; Frasca A; Levy RJ; Ferrari G
    J Am Heart Assoc; 2021 Feb; 10(3):e018921. PubMed ID: 33494616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of advanced glycation end product formation and serum protein infiltration in bioprosthetic heart valve leaflets: Investigations of anti-glycation agents and anticalcification interactions with ethanol pretreatment.
    Zakharchenko A; Rock CA; Thomas TE; Keeney S; Hall EJ; Takano H; Krieger AM; Ferrari G; Levy RJ
    Biomaterials; 2022 Oct; 289():121782. PubMed ID: 36099713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model studies of advanced glycation end product modification of heterograft biomaterials: The effects of in vitro glucose, glyoxal, and serum albumin on collagen structure and mechanical properties.
    Rock CA; Keeney S; Zakharchenko A; Takano H; Spiegel DA; Krieger AM; Ferrari G; Levy RJ
    Acta Biomater; 2021 Mar; 123():275-285. PubMed ID: 33444798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly-2-methyl-2-oxazoline-modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration.
    Zakharchenko A; Xue Y; Keeney S; Rock CA; Alferiev IS; Stachelek SJ; Takano H; Thomas T; Nagaswami C; Krieger AM; Chorny M; Ferrari G; Levy RJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35131859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes.
    Xue Y; Kossar AP; Abramov A; Frasca A; Sun M; Zyablitskaya M; Paik D; Kalfa D; Della Barbera M; Thiene G; Kozaki S; Kawashima T; Gorman JH; Gorman RC; Gillespie MJ; Carreon CK; Sanders SP; Levy RJ; Ferrari G
    Cardiovasc Res; 2023 Mar; 119(1):302-315. PubMed ID: 35020813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification.
    Abramov A; Xue Y; Zakharchenko A; Kurade M; Soni RK; Levy RJ; Ferrari G
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2219054120. PubMed ID: 36574676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Durability of Transcatheter and Surgical Bioprosthetic Aortic Valves in Patients at Lower Surgical Risk.
    Søndergaard L; Ihlemann N; Capodanno D; Jørgensen TH; Nissen H; Kjeldsen BJ; Chang Y; Steinbrüchel DA; Olsen PS; Petronio AS; Thyregod HGH
    J Am Coll Cardiol; 2019 Feb; 73(5):546-553. PubMed ID: 30732707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprosthetic structural valve deterioration: How do TAVR and SAVR prostheses compare?
    Aldalati O; Kaura A; Khan H; Dworakowski R; Byrne J; Eskandari M; Deshpande R; Monaghan M; Wendler O; MacCarthy P
    Int J Cardiol; 2018 Oct; 268():170-175. PubMed ID: 30041783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Long-Term Structural Deterioration of Transcatheter Aortic Bioprosthetic Valves Using the New European Definition.
    Durand E; Sokoloff A; Urena-Alcazar M; Chevalier B; Chassaing S; Didier R; Tron C; Litzler PY; Bouleti C; Himbert D; Hovasse T; Bar O; Avinée G; Iung B; Blanchard D; Gilard M; Cribier A; Lefevre T; Eltchaninoff H
    Circ Cardiovasc Interv; 2019 Apr; 12(4):e007597. PubMed ID: 30998397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal Hemodynamics of Transcatheter and Surgical Aortic Valves in the PARTNER Trial.
    Douglas PS; Leon MB; Mack MJ; Svensson LG; Webb JG; Hahn RT; Pibarot P; Weissman NJ; Miller DC; Kapadia S; Herrmann HC; Kodali SK; Makkar RR; Thourani VH; Lerakis S; Lowry AM; Rajeswaran J; Finn MT; Alu MC; Smith CR; Blackstone EH;
    JAMA Cardiol; 2017 Nov; 2(11):1197-1206. PubMed ID: 28973520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcatheter Aortic Valve-in-Valve Procedure in Patients with Bioprosthetic Structural Valve Deterioration.
    Reul RM; Ramchandani MK; Reardon MJ
    Methodist Debakey Cardiovasc J; 2017; 13(3):132-141. PubMed ID: 29743998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH.
    Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y
    Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticoagulation After Surgical or Transcatheter Bioprosthetic Aortic Valve Replacement.
    Chakravarty T; Patel A; Kapadia S; Raschpichler M; Smalling RW; Szeto WY; Abramowitz Y; Cheng W; Douglas PS; Hahn RT; Herrmann HC; Kereiakes D; Svensson L; Yoon SH; Babaliaros VC; Kodali S; Thourani VH; Alu MC; Liu Y; McAndrew T; Mack M; Leon MB; Makkar RR
    J Am Coll Cardiol; 2019 Sep; 74(9):1190-1200. PubMed ID: 31466616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical versus bioprosthetic aortic valve replacement.
    Head SJ; Çelik M; Kappetein AP
    Eur Heart J; 2017 Jul; 38(28):2183-2191. PubMed ID: 28444168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomarkers of aortic bioprosthetic valve structural degeneration.
    Salaun E; Côté N; Clavel MA; Pibarot P
    Curr Opin Cardiol; 2019 Mar; 34(2):132-139. PubMed ID: 30562183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification.
    Wen S; Zhou Y; Yim WY; Wang S; Xu L; Shi J; Qiao W; Dong N
    Front Pharmacol; 2022; 13():909801. PubMed ID: 35721165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of structural valve deterioration of transcatheter aortic bioprosthetic balloon-expandable valves using the new European consensus definition.
    Eltchaninoff H; Durand E; Avinée G; Tron C; Litzler PY; Bauer F; Dacher JN; Werhlin C; Bouhzam N; Bettinger N; Candolfi P; Cribier A
    EuroIntervention; 2018 Jun; 14(3):e264-e271. PubMed ID: 29599103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reoperative Surgical Aortic Valve Replacement Versus Transcatheter Valve-in-Valve Replacement for Degenerated Bioprosthetic Aortic Valves.
    Ejiofor JI; Yammine M; Harloff MT; McGurk S; Muehlschlegel JD; Shekar PS; Cohn LH; Shah P; Kaneko T
    Ann Thorac Surg; 2016 Nov; 102(5):1452-1458. PubMed ID: 27526654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric prosthetic heart valves: A review of current technologies and future directions.
    Singh SK; Kachel M; Castillero E; Xue Y; Kalfa D; Ferrari G; George I
    Front Cardiovasc Med; 2023; 10():1137827. PubMed ID: 36970335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.