These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32875550)

  • 1. Radiomics predicts response of individual HER2-amplified colorectal cancer liver metastases in patients treated with HER2-targeted therapy.
    Giannini V; Rosati S; Defeudis A; Balestra G; Vassallo L; Cappello G; Mazzetti S; De Mattia C; Rizzetto F; Torresin A; Sartore-Bianchi A; Siena S; Vanzulli A; Leone F; Zagonel V; Marsoni S; Regge D
    Int J Cancer; 2020 Dec; 147(11):3215-3223. PubMed ID: 32875550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delta-Radiomics Predicts Response to First-Line Oxaliplatin-Based Chemotherapy in Colorectal Cancer Patients with Liver Metastases.
    Giannini V; Pusceddu L; Defeudis A; Nicoletti G; Cappello G; Mazzetti S; Sartore-Bianchi A; Siena S; Vanzulli A; Rizzetto F; Fenocchio E; Lazzari L; Bardelli A; Marsoni S; Regge D
    Cancers (Basel); 2022 Jan; 14(1):. PubMed ID: 35008405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An innovative radiomics approach to predict response to chemotherapy of liver metastases based on CT images.
    Giannini V; Defeudis A; Rosati S; Cappello G; Mazzetti S; Panic J; Regge D; Balestra G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1339-1342. PubMed ID: 33018236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.
    Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F
    Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CT-Based Radiomics Analysis Before Thermal Ablation to Predict Local Tumor Progression for Colorectal Liver Metastases.
    Taghavi M; Staal F; Gomez Munoz F; Imani F; Meek DB; Simões R; Klompenhouwer LG; van der Heide UA; Beets-Tan RGH; Maas M
    Cardiovasc Intervent Radiol; 2021 Jun; 44(6):913-920. PubMed ID: 33506278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of radiomics approaches to predict resistance to 1st line chemotherapy in liver metastatic colorectal cancer.
    Defeudis A; Cefaloni L; Giannetto G; Cappello G; Rizzetto F; Panic J; Barra D; Nicoletti G; Mazzetti S; Vanzulli A; Regge D; Giannini V
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3305-3308. PubMed ID: 34891947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiologic and Genomic Evolution of Individual Metastases during HER2 Blockade in Colorectal Cancer.
    Siravegna G; Lazzari L; Crisafulli G; Sartore-Bianchi A; Mussolin B; Cassingena A; Martino C; Lanman RB; Nagy RJ; Fairclough S; Rospo G; Corti G; Bartolini A; Arcella P; Montone M; Lodi F; Lorenzato A; Vanzati A; Valtorta E; Cappello G; Bertotti A; Lonardi S; Zagonel V; Leone F; Russo M; Balsamo A; Truini M; Di Nicolantonio F; Amatu A; Bonazzina E; Ghezzi S; Regge D; Vanzulli A; Trusolino L; Siena S; Marsoni S; Bardelli A
    Cancer Cell; 2018 Jul; 34(1):148-162.e7. PubMed ID: 29990497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases.
    Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M
    Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based radiomics predicts response to chemotherapy in colorectal liver metastases.
    Wei J; Cheng J; Gu D; Chai F; Hong N; Wang Y; Tian J
    Med Phys; 2021 Jan; 48(1):513-522. PubMed ID: 33119899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of CT radiomics to predict treatment response of individual liver metastases in esophagogastric cancer patients.
    Klaassen R; Larue RTHM; Mearadji B; van der Woude SO; Stoker J; Lambin P; van Laarhoven HWM
    PLoS One; 2018; 13(11):e0207362. PubMed ID: 30440002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Texture features of colorectal liver metastases on pretreatment contrast-enhanced CT may predict response and prognosis in patients treated with bevacizumab-containing chemotherapy: a pilot study including comparison with standard chemotherapy.
    Ravanelli M; Agazzi GM; Tononcelli E; Roca E; Cabassa P; Baiocchi G; Berruti A; Maroldi R; Farina D
    Radiol Med; 2019 Sep; 124(9):877-886. PubMed ID: 31172448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent validation of CT radiomics models in colorectal liver metastases: predicting local tumour progression after ablation.
    van der Reijd DJ; Guerendel C; Staal FCR; Busard MP; De Oliveira Taveira M; Klompenhouwer EG; Kuhlmann KFD; Moelker A; Verhoef C; Starmans MPA; Lambregts DMJ; Beets-Tan RGH; Benson S; Maas M
    Eur Radiol; 2024 Jun; 34(6):3635-3643. PubMed ID: 37987835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification.
    Wang Q; Nilsson H; Xu K; Wei X; Chen D; Zhao D; Hu X; Wang A; Bai G
    Eur J Radiol; 2024 Jun; 175():111459. PubMed ID: 38636408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Machine Learning Benchmark Study for Radiomics-Based Survival Analysis of CT Imaging Data in Patients With Hepatic Metastases of CRC.
    Stüber AT; Coors S; Schachtner B; Weber T; Rügamer D; Bender A; Mittermeier A; Öcal O; Seidensticker M; Ricke J; Bischl B; Ingrisch M
    Invest Radiol; 2023 Dec; 58(12):874-881. PubMed ID: 37504498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types.
    Zhang Y; Zhang B; Liang F; Liang S; Zhang Y; Yan P; Ma C; Liu A; Guo F; Jiang C
    Eur Radiol; 2019 Apr; 29(4):2157-2165. PubMed ID: 30306329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CT-based radiomics for the identification of colorectal cancer liver metastases sensitive to first-line irinotecan-based chemotherapy.
    Qi W; Yang J; Zheng L; Lu Y; Liu R; Ju Y; Niu T; Wang D
    Med Phys; 2023 May; 50(5):2705-2714. PubMed ID: 36841949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing Radiomics features of tumour and healthy liver tissue in a limited CT dataset: A machine learning study.
    Lysdahlgaard S
    Radiography (Lond); 2022 Aug; 28(3):718-724. PubMed ID: 35428570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.
    Ji GW; Zhu FP; Xu Q; Wang K; Wu MY; Tang WW; Li XC; Wang XH
    EBioMedicine; 2019 Dec; 50():156-165. PubMed ID: 31735556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.
    Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P
    Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?
    Yang L; Dong D; Fang M; Zhu Y; Zang Y; Liu Z; Zhang H; Ying J; Zhao X; Tian J
    Eur Radiol; 2018 May; 28(5):2058-2067. PubMed ID: 29335867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.