BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32875741)

  • 1. 3D In Vitro Neuron on a Chip for Probing Calcium Mechanostimulation.
    Bobo J; Garg A; Venkatraman P; Puthenveedu M; LeDuc PR
    Adv Biosyst; 2020 Oct; 4(10):e2000080. PubMed ID: 32875741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffolds for 3D in vitro culture of neural lineage cells.
    Murphy AR; Laslett A; O'Brien CM; Cameron NR
    Acta Biomater; 2017 May; 54():1-20. PubMed ID: 28259835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering.
    Mobini S; Song YH; McCrary MW; Schmidt CE
    Biomaterials; 2019 Apr; 198():146-166. PubMed ID: 29880219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip.
    van de Wijdeven R; Ramstad OH; Bauer US; Halaas Ø; Sandvig A; Sandvig I
    Biomed Microdevices; 2018 Jan; 20(1):9. PubMed ID: 29294210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis.
    Soffe R; Baratchi S; Tang SY; Nasabi M; McIntyre P; Mitchell A; Khoshmanesh K
    Sci Rep; 2015 Jul; 5():11973. PubMed ID: 26202725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional microfiber devices that mimic physiological environments to probe cell mechanics and signaling.
    Ruder WC; Pratt ED; Bakhru S; Sitti M; Zappe S; Cheng CM; Antaki JF; LeDuc PR
    Lab Chip; 2012 Apr; 12(10):1775-9. PubMed ID: 22374375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus.
    Jones BF; Wall ME; Carroll RL; Washburn S; Banes AJ
    J Biomech; 2005 Aug; 38(8):1653-64. PubMed ID: 15958223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-on-a-chip for integrating a 3D tumor microenvironment: chemical and mechanical factors.
    Wan L; Neumann CA; LeDuc PR
    Lab Chip; 2020 Mar; 20(5):873-888. PubMed ID: 32025687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional dependence of osteoblastic calcium response to mechanical stimuli.
    Adachi T; Sato K; Tomita Y
    Biomech Model Mechanobiol; 2003 Nov; 2(2):73-82. PubMed ID: 14586810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system.
    Yang K; Park HJ; Han S; Lee J; Ko E; Kim J; Lee JS; Yu JH; Song KY; Cheong E; Cho SR; Chung S; Cho SW
    Biomaterials; 2015 Sep; 63():177-88. PubMed ID: 26113074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model.
    LaPlaca MC; Cullen DK; McLoughlin JJ; Cargill RS
    J Biomech; 2005 May; 38(5):1093-105. PubMed ID: 15797591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbioreactors for Cartilage Tissue Engineering.
    Chang YH; Wu MH
    Methods Mol Biol; 2015; 1340():235-44. PubMed ID: 26445843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical stimulation of epithelial cells using polypyrrole microactuators.
    Svennersten K; Berggren M; Richter-Dahlfors A; Jager EW
    Lab Chip; 2011 Oct; 11(19):3287-93. PubMed ID: 21842071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells.
    Wertheim L; Shapira A; Amir RJ; Dvir T
    Nanotechnology; 2018 Apr; 29(13):13LT01. PubMed ID: 29384490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new device for dynamic ventilation-analogue mechanostimulation of pliant tissue layers.
    Gamerdinger K; Schneider M; Smudde E; Guttmann J; Schumann S
    Acta Bioeng Biomech; 2012; 14(4):53-62. PubMed ID: 23394305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field.
    Yang G; Long H; Ren X; Ma K; Xiao Z; Wang Y; Guo Y
    Dev Growth Differ; 2017 Feb; 59(2):70-82. PubMed ID: 28185267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new experimental system for the extended application of cyclic hydrostatic pressure to cell culture.
    Maul TM; Hamilton DW; Nieponice A; Soletti L; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):110-6. PubMed ID: 17227105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical-stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes.
    Tsutsumi M; Inoue K; Denda S; Ikeyama K; Goto M; Denda M
    Cell Tissue Res; 2009 Oct; 338(1):99-106. PubMed ID: 19657674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.