BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32876443)

  • 1. Machine Learning Prediction of Electronic Coupling between the Guanine Bases of DNA.
    Bag S; Aggarwal A; Maiti PK
    J Phys Chem A; 2020 Sep; 124(38):7658-7664. PubMed ID: 32876443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model.
    Aggarwal A; Vinayak V; Bag S; Bhattacharyya C; Waghmare UV; Maiti PK
    J Chem Inf Model; 2021 Jan; 61(1):106-114. PubMed ID: 33320660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anhydrous crystals of DNA bases are wide gap semiconductors.
    Maia FF; Freire VN; Caetano EW; Azevedo DL; Sales FA; Albuquerque EL
    J Chem Phys; 2011 May; 134(17):175101. PubMed ID: 21548706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Prediction of DNA Charge Transport.
    Korol R; Segal D
    J Phys Chem B; 2019 Apr; 123(13):2801-2811. PubMed ID: 30865456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained time-dependent density functional simulation of charge transfer in complex systems: application to hole transfer in DNA.
    Kubar T; Elstner M
    J Phys Chem B; 2010 Sep; 114(34):11221-40. PubMed ID: 20687528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards the ionizing radiation induced bond dissociation mechanism in oxygen, water, guanine and DNA fragmentation: a density functional theory simulation.
    Kc S; Abolfath R
    Sci Rep; 2022 Nov; 12(1):19853. PubMed ID: 36400823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing charge transport in oxidatively damaged DNA sequences under the influence of structural fluctuations.
    Lee MH; Brancolini G; Gutiérrez R; Di Felice R; Cuniberti G
    J Phys Chem B; 2012 Sep; 116(36):10977-85. PubMed ID: 22679932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing the electronic circular dichroism spectrum of DNA quadruple helices of different topology: A critical test for a generalized excitonic model based on a fragment diabatization.
    Asha H; Green JA; Esposito L; Santoro F; Improta R
    Chirality; 2023 May; 35(5):298-310. PubMed ID: 36775278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum mechanical calculations unveil the structure and properties of the absorbing and emitting excited electronic states of guanine quadruplex.
    Improta R
    Chemistry; 2014 Jun; 20(26):8106-15. PubMed ID: 24828154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QM/MM calculation of solvent effects on absorption spectra of guanine.
    Parac M; Doerr M; Marian CM; Thiel W
    J Comput Chem; 2010 Jan; 31(1):90-106. PubMed ID: 19412906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals.
    Pereira F; Xiao K; Latino DA; Wu C; Zhang Q; Aires-de-Sousa J
    J Chem Inf Model; 2017 Jan; 57(1):11-21. PubMed ID: 28033004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined fragment-based machine learning force field with classical force field and its application in the NMR calculations of macromolecules in solutions.
    Liao K; Dong S; Cheng Z; Li W; Li S
    Phys Chem Chem Phys; 2022 Aug; 24(31):18559-18567. PubMed ID: 35916054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanogap-based all-electronic DNA sequencing devices using MoS
    Perez A; Amorim RG; Villegas CEP; Rocha AR
    Phys Chem Chem Phys; 2020 Dec; 22(46):27053-27059. PubMed ID: 33215614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman Spectra of Amino Acids and Peptides from Machine Learning Polarizabilities.
    Berger E; Niemelä J; Lampela O; Juffer AH; Komsa HP
    J Chem Inf Model; 2024 Jun; 64(12):4601-4612. PubMed ID: 38829726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Size and Shape of Nitrogen-Containing Aromatics on Conformational Preferences of DNA Containing Damaged Guanine.
    Kung RW; Sharma P; Wetmore SD
    J Chem Inf Model; 2018 Jul; 58(7):1415-1425. PubMed ID: 29923712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Approach to Calculate Electronic Couplings between Quasi-diabatic Molecular Orbitals: The Case of DNA.
    Bai X; Guo X; Wang L
    J Phys Chem Lett; 2021 Oct; 12(42):10457-10464. PubMed ID: 34672582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragmentation Spectra Prediction and DNA Adducts Structural Determination.
    Carrà A; Macaluso V; Villalta PW; Spezia R; Balbo S
    J Am Soc Mass Spectrom; 2019 Dec; 30(12):2771-2784. PubMed ID: 31696434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks.
    Nebgen B; Lubbers N; Smith JS; Sifain AE; Lokhov A; Isayev O; Roitberg AE; Barros K; Tretiak S
    J Chem Theory Comput; 2018 Sep; 14(9):4687-4698. PubMed ID: 30064217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homopairing possibilities of the DNA bases cytosine and guanine: an ab initio DFT study.
    Kelly RE; Lee YJ; Kantorovich LN
    J Phys Chem B; 2005 Nov; 109(46):22045-52. PubMed ID: 16853862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.