These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 32876918)

  • 1. Sepsis and Cerebral Dysfunction: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Potential Therapeutic Approaches.
    Gu M; Mei XL; Zhao YN
    Neurotox Res; 2021 Apr; 39(2):489-503. PubMed ID: 32876918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage.
    Tang Y; Soroush F; Sun S; Liverani E; Langston JC; Yang Q; Kilpatrick LE; Kiani MF
    J Neuroinflammation; 2018 Nov; 15(1):309. PubMed ID: 30400800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy.
    Haileselassie B; Joshi AU; Minhas PS; Mukherjee R; Andreasson KI; Mochly-Rosen D
    J Neuroinflammation; 2020 Jan; 17(1):36. PubMed ID: 31987040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation.
    Wu Q; Gao C; Wang H; Zhang X; Li Q; Gu Z; Shi X; Cui Y; Wang T; Chen X; Wang X; Luo C; Tao L
    Int J Biochem Cell Biol; 2018 Jan; 94():44-55. PubMed ID: 29174311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging influences in the blood-brain barrier permeability and cerebral oxidative stress in sepsis.
    Margotti W; Giustina AD; de Souza Goldim MP; Hubner M; Cidreira T; Denicol TL; Joaquim L; De Carli RJ; Danielski LG; Metzker KLL; Bonfante S; Barichello T; Petronilho F
    Exp Gerontol; 2020 Oct; 140():111063. PubMed ID: 32827711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammation, apoptosis and autophagy as critical players in vascular dementia.
    Wang XX; Zhang B; Xia R; Jia QY
    Eur Rev Med Pharmacol Sci; 2020 Sep; 24(18):9601-9614. PubMed ID: 33015803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The blood-brain barrier dysfunction in sepsis.
    Barichello T; Generoso JS; Collodel A; Petronilho F; Dal-Pizzol F
    Tissue Barriers; 2021 Jan; 9(1):1840912. PubMed ID: 33319634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurochemical effects of sepsis on the brain.
    Barichello T; Giridharan VV; Catalão CHR; Ritter C; Dal-Pizzol F
    Clin Sci (Lond); 2023 Mar; 137(6):401-414. PubMed ID: 36942500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-dose Dexamethasone Increases Autophagy in Cerebral Cortical Neurons of Juvenile Rats with Sepsis Associated Encephalopathy.
    Zhou R; Sun X; Li Y; Huang Q; Qu Y; Mu D; Li X
    Neuroscience; 2019 Nov; 419():83-99. PubMed ID: 31682824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis.
    Liu L; Xie K; Chen H; Dong X; Li Y; Yu Y; Wang G; Yu Y
    Brain Res; 2014 Nov; 1589():78-92. PubMed ID: 25251596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycemic control with insulin attenuates sepsis-associated encephalopathy by inhibiting glial activation via the suppression of the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways in septic rats.
    Huang CT; Lue JH; Cheng TH; Tsai YJ
    Brain Res; 2020 Jul; 1738():146822. PubMed ID: 32272096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage.
    Ashraf U; Ding Z; Deng S; Ye J; Cao S; Chen Z
    Virulence; 2021 Dec; 12(1):968-980. PubMed ID: 33724154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine.
    Vucicevic L; Misirkic-Marjanovic M; Paunovic V; Kravic-Stevovic T; Martinovic T; Ciric D; Maric N; Petricevic S; Harhaji-Trajkovic L; Bumbasirevic V; Trajkovic V
    Autophagy; 2014; 10(12):2362-78. PubMed ID: 25551567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The encephalopathy in sepsis.
    Siami S; Annane D; Sharshar T
    Crit Care Clin; 2008 Jan; 24(1):67-82, viii. PubMed ID: 18241779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation.
    Baechler BL; Bloemberg D; Quadrilatero J
    Autophagy; 2019 Sep; 15(9):1606-1619. PubMed ID: 30859901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitexin reverses the autophagy dysfunction to attenuate MCAO-induced cerebral ischemic stroke via mTOR/Ulk1 pathway.
    Jiang J; Dai J; Cui H
    Biomed Pharmacother; 2018 Mar; 99():583-590. PubMed ID: 29710456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy.
    Kikuchi DS; Campos ACP; Qu H; Forrester SJ; Pagano RL; Lassègue B; Sadikot RT; Griendling KK; Hernandes MS
    J Neuroinflammation; 2019 Nov; 16(1):241. PubMed ID: 31779628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Omi/HtrA2 Regulates a Mitochondria-Dependent Apoptotic Pathway in a Murine Model of Septic Encephalopathy.
    Wang P; Hu Y; Yao D; Li Y
    Cell Physiol Biochem; 2018; 49(6):2163-2173. PubMed ID: 30286467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis.
    Dal-Pizzol F; Rojas HA; dos Santos EM; Vuolo F; Constantino L; Feier G; Pasquali M; Comim CM; Petronilho F; Gelain DP; Quevedo J; Moreira JC; Ritter C
    Mol Neurobiol; 2013 Aug; 48(1):62-70. PubMed ID: 23479197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.
    Levite M
    J Neural Transm (Vienna); 2014 Aug; 121(8):1029-75. PubMed ID: 25081016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.