These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 32877417)
21. Low-severity fires in the boreal region: reproductive implications for black spruce stands in between stand-replacing fire events. Alfaro-Sánchez R; Johnstone JF; Baltzer JL Ann Bot; 2024 Apr; ():. PubMed ID: 38592408 [TBL] [Abstract][Full Text] [Related]
22. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities. Hudspith VA; Belcher CM; Kelly R; Hu FS PLoS One; 2015; 10(4):e0120835. PubMed ID: 25853712 [TBL] [Abstract][Full Text] [Related]
24. Wildfire-induced increases in photosynthesis in boreal forest ecosystems of North America. Kim JE; Wang JA; Li Y; Czimczik CI; Randerson JT Glob Chang Biol; 2024 Jan; 30(1):e17151. PubMed ID: 38273511 [TBL] [Abstract][Full Text] [Related]
25. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest. Ludwig SM; Alexander HD; Kielland K; Mann PJ; Natali SM; Ruess RW Glob Chang Biol; 2018 Dec; 24(12):5841-5852. PubMed ID: 30230664 [TBL] [Abstract][Full Text] [Related]
26. Fire severity filters regeneration traits to shape community assembly in Alaska's boreal forest. Hollingsworth TN; Johnstone JF; Bernhardt EL; Chapin FS PLoS One; 2013; 8(2):e56033. PubMed ID: 23418503 [TBL] [Abstract][Full Text] [Related]
27. The relationship between fire history and an exotic fungal disease in a deciduous forest. Holzmueller EJ; Jose S; Jenkins MA Oecologia; 2008 Mar; 155(2):347-56. PubMed ID: 18026756 [TBL] [Abstract][Full Text] [Related]
28. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA. Kulakowski D; Veblen TT; Bebi P PLoS One; 2016; 11(7):e0158138. PubMed ID: 27438289 [TBL] [Abstract][Full Text] [Related]
29. Distribution patterns of three long-horned beetles (Coleoptera: Cerambycidae) shortly after fire in boreal forest: adults colonizing stands versus progeny emerging from trees. Boulanger Y; Sirois L; Hébert C Environ Entomol; 2013 Feb; 42(1):17-28. PubMed ID: 23339782 [TBL] [Abstract][Full Text] [Related]
30. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga. Erni S; Arseneault D; Parisien MA; Bégin Y Glob Chang Biol; 2017 Mar; 23(3):1152-1166. PubMed ID: 27514018 [TBL] [Abstract][Full Text] [Related]
31. Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Schulze ED; Wirth C; Mollicone D; Ziegler W Oecologia; 2005 Nov; 146(1):77-88. PubMed ID: 16091969 [TBL] [Abstract][Full Text] [Related]
32. Increasing fire frequency and severity will increase habitat loss for a boreal forest indicator species. Palm EC; Suitor MJ; Joly K; Herriges JD; Kelly AP; Hervieux D; Russell KLM; Bentzen TW; Larter NC; Hebblewhite M Ecol Appl; 2022 Apr; 32(3):e2549. PubMed ID: 35094462 [TBL] [Abstract][Full Text] [Related]
33. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Hart SJ; Henkelman J; McLoughlin PD; Nielsen SE; Truchon-Savard A; Johnstone JF Glob Chang Biol; 2019 Mar; 25(3):869-884. PubMed ID: 30570807 [TBL] [Abstract][Full Text] [Related]
34. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. Jean M; Holland-Moritz H; Melvin AM; Johnstone JF; Mack MC New Phytol; 2020 Sep; 227(5):1335-1349. PubMed ID: 32299141 [TBL] [Abstract][Full Text] [Related]
35. Simulating the influences of various fire regimes on caribou winter habitat. Rupp TS; Olson M; Adams LG; Dale BW; Joly K; Henkelman J; Collins WB; Starfield AM Ecol Appl; 2006 Oct; 16(5):1730-43. PubMed ID: 17069367 [TBL] [Abstract][Full Text] [Related]
36. Performance of an age series of Alnus-cardamom plantations in the Sikkim Himalaya: nutrient dynamics. Sharma G; Sharma R; Sharma E; Singh KK Ann Bot; 2002 Mar; 89(3):273-82. PubMed ID: 12096739 [TBL] [Abstract][Full Text] [Related]
37. Leaf area dynamics of a boreal black spruce fire chronosequence. Bond-Lamberty B; Wang C; Gower ST; Norman J Tree Physiol; 2002 Oct; 22(14):993-1001. PubMed ID: 12359526 [TBL] [Abstract][Full Text] [Related]
38. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Baltzer JL; Day NJ; Walker XJ; Greene D; Mack MC; Alexander HD; Arseneault D; Barnes J; Bergeron Y; Boucher Y; Bourgeau-Chavez L; Brown CD; Carrière S; Howard BK; Gauthier S; Parisien MA; Reid KA; Rogers BM; Roland C; Sirois L; Stehn S; Thompson DK; Turetsky MR; Veraverbeke S; Whitman E; Yang J; Johnstone JF Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34697246 [TBL] [Abstract][Full Text] [Related]
39. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Mekonnen ZA; Riley WJ; Randerson JT; Grant RF; Rogers BM Nat Plants; 2019 Sep; 5(9):952-958. PubMed ID: 31451797 [TBL] [Abstract][Full Text] [Related]
40. Alder, Nitrogen, and Lake Ecology: Terrestrial-Aquatic Linkages in the Postglacial History of Lone Spruce Pond, Southwestern Alaska. Perren BB; Axford Y; Kaufman DS PLoS One; 2017; 12(1):e0169106. PubMed ID: 28076393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]