These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32877679)

  • 1. AMPAR-Dependent Synaptic Plasticity Initiates Cortical Remapping and Adaptive Behaviors during Sensory Experience.
    Campelo T; Augusto E; Chenouard N; de Miranda A; Kouskoff V; Camus C; Choquet D; Gambino F
    Cell Rep; 2020 Sep; 32(9):108097. PubMed ID: 32877679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory deprivation after focal ischemia in mice accelerates brain remapping and improves functional recovery through Arc-dependent synaptic plasticity.
    Kraft AW; Bauer AQ; Culver JP; Lee JM
    Sci Transl Med; 2018 Jan; 10(426):. PubMed ID: 29386356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.
    Ehrlich I; Malinow R
    J Neurosci; 2004 Jan; 24(4):916-27. PubMed ID: 14749436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ipsilateral whiskers suppress experience-dependent plasticity in the barrel cortex.
    Glazewski S; Benedetti BL; Barth AL
    J Neurosci; 2007 Apr; 27(14):3910-20. PubMed ID: 17409256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin mediates cross-modal reorganization of cortical circuits.
    Jitsuki S; Takemoto K; Kawasaki T; Tada H; Takahashi A; Becamel C; Sano A; Yuzaki M; Zukin RS; Ziff EB; Kessels HW; Takahashi T
    Neuron; 2011 Feb; 69(4):780-92. PubMed ID: 21338886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca
    Sanderson JL; Scott JD; Dell'Acqua ML
    J Neurosci; 2018 Mar; 38(11):2863-2876. PubMed ID: 29440558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.
    Goel A; Xu LW; Snyder KP; Song L; Goenaga-Vazquez Y; Megill A; Takamiya K; Huganir RL; Lee HK
    PLoS One; 2011 Mar; 6(3):e18264. PubMed ID: 21483826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors.
    Penn AC; Zhang CL; Georges F; Royer L; Breillat C; Hosy E; Petersen JD; Humeau Y; Choquet D
    Nature; 2017 Sep; 549(7672):384-388. PubMed ID: 28902836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo.
    Zhang Y; Cudmore RH; Lin DT; Linden DJ; Huganir RL
    Nat Neurosci; 2015 Mar; 18(3):402-7. PubMed ID: 25643295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained Enhancement of Lateral Inhibitory Circuit Maintains Cross Modal Cortical Reorganization.
    Nakajima W; Jitsuki S; Sano A; Takahashi T
    PLoS One; 2016; 11(2):e0149068. PubMed ID: 26863615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex.
    Huang W; Armstrong-James M; Rema V; Diamond ME; Ebner FF
    J Neurophysiol; 1998 Dec; 80(6):3261-71. PubMed ID: 9862920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex.
    Fox K
    Neuroscience; 2002; 111(4):799-814. PubMed ID: 12031405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex.
    Wallace H; Glazewski S; Liming K; Fox K
    J Neurosci; 2001 Jun; 21(11):3881-94. PubMed ID: 11356876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity.
    Gilbert J; Shu S; Yang X; Lu Y; Zhu LQ; Man HY
    Acta Neuropathol Commun; 2016 Dec; 4(1):131. PubMed ID: 27955702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale plasticity in barrel cortex following repeated whisker trimming in young adult hamsters.
    Maier DL; Grieb GM; Stelzner DJ; McCasland JS
    Exp Neurol; 2003 Dec; 184(2):737-45. PubMed ID: 14769365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional mapping of the primary somatosensory cortex upon sensory deprivation.
    Kole K; Komuro Y; Provaznik J; Pistolic J; Benes V; Tiesinga P; Celikel T
    Gigascience; 2017 Oct; 6(10):1-6. PubMed ID: 29020745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whisker experience-dependent mGluR signaling maintains synaptic strength in the mouse adolescent cortex.
    Kubota J; Mikami Y; Kanemaru K; Sekiya H; Okubo Y; Iino M
    Eur J Neurosci; 2016 Aug; 44(3):2004-14. PubMed ID: 27225340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid plasticity follows whisker pairing in barrel cortex of the awake rat.
    Sellien H; Ebner FF
    Exp Brain Res; 2007 Feb; 177(1):1-14. PubMed ID: 16924487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs.
    Chung S; Jeong JH; Ko S; Yu X; Kim YH; Isaac JTR; Koretsky AP
    Cell Rep; 2017 Jun; 19(13):2707-2717. PubMed ID: 28658619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical Synaptic AMPA Receptor Plasticity during Motor Learning.
    Roth RH; Cudmore RH; Tan HL; Hong I; Zhang Y; Huganir RL
    Neuron; 2020 Mar; 105(5):895-908.e5. PubMed ID: 31901303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.