These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32877784)

  • 1. Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983-2018).
    Santos CAG; Brasil Neto RM; Nascimento TVMD; Silva RMD; Mishra M; Frade TG
    Sci Total Environ; 2021 Jan; 750():141258. PubMed ID: 32877784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the TRMM product for monitoring drought over Paraíba State, northeastern Brazil: a trend analysis.
    Brasil Neto RM; Santos CAG; Silva JFCBDC; da Silva RM; Dos Santos CAC; Mishra M
    Sci Rep; 2021 Jan; 11(1):1097. PubMed ID: 33441745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geospatial cluster analysis of the state, duration and severity of drought over Paraíba State, northeastern Brazil.
    Brasil Neto RM; Santos CAG; Silva RMD; Santos CACD; Liu Z; Quinn NW
    Sci Total Environ; 2021 Dec; 799():149492. PubMed ID: 34426352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drought assessment using a TRMM-derived standardized precipitation index for the upper São Francisco River basin, Brazil.
    Santos CAG; Brasil Neto RM; Passos JSA; da Silva RM
    Environ Monit Assess; 2017 Jun; 189(6):250. PubMed ID: 28470481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different rainfall products with gauge-based measurements over Narmada River Basin, India.
    Sharma J; Singh O
    Environ Monit Assess; 2024 Jan; 196(2):114. PubMed ID: 38182841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring spatial and temporal drought over the semi-arid Sahibi river basin in Rajasthan, India.
    Chahal M; Singh O; Bhardwaj P; Ganapuram S
    Environ Monit Assess; 2021 Oct; 193(11):743. PubMed ID: 34676445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal drought assessment of the Subarnarekha River basin, India, using CHIRPS-derived hydrometeorological indices.
    Tabassum F; Krishna AP
    Environ Monit Assess; 2022 Oct; 194(12):902. PubMed ID: 36251084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring hydrological drought using long-term satellite-based precipitation data.
    Lai C; Zhong R; Wang Z; Wu X; Chen X; Wang P; Lian Y
    Sci Total Environ; 2019 Feb; 649():1198-1208. PubMed ID: 30308891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the impact of precipitation on hardrock aquifer system using standard precipitation index and groundwater resilience index: a case study of Purulia, West Bengal, India.
    Sarkar M; Chinnasamy P
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):112548-112563. PubMed ID: 37833593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought analysis for Kuwait using standardized precipitation index.
    Almedeij J
    ScientificWorldJournal; 2014; 2014():451841. PubMed ID: 25386598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring short- and long-term meteorological drought parameters in the Vaippar Basin of Southern India.
    Muthiah M; Sivarajan S; Madasamy N; Natarajan A; Ayyavoo R
    Sci Rep; 2024 Jun; 14(1):13428. PubMed ID: 38862528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index.
    Mlenga DH; Jordaan AJ
    Jamba; 2019; 11(1):712. PubMed ID: 31745406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of meteorological drought and standardized precipitation index based on the random forest (RF), random tree (RT), and Gaussian process regression (GPR) models.
    Elbeltagi A; Pande CB; Kumar M; Tolche AD; Singh SK; Kumar A; Vishwakarma DK
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43183-43202. PubMed ID: 36648725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated assessment of drought vulnerability for water resources management of Bina basin in Central India.
    Thomas T; Nayak PC; Ventakesh B
    Environ Monit Assess; 2022 Jul; 194(9):621. PubMed ID: 35906447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index.
    Mlenga DH; Jordaan AJ; Mandebvu B
    Jamba; 2019; 11(1):725. PubMed ID: 31616546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an annual drought classification system based on drought severity indexes.
    Lima RPC; Silva DDD; Moreira MC; Passos JBMC; Coelho CD; Elesbon AAA
    An Acad Bras Cienc; 2019; 91(1):e20180188. PubMed ID: 30994762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rainfall trend and variability in Southeast Florida: Implications for freshwater availability in the Everglades.
    Abiy AZ; Melesse AM; Abtew W; Whitman D
    PLoS One; 2019; 14(2):e0212008. PubMed ID: 30753221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily weather generator with drought properties by copulas and standardized precipitation indices.
    Hong NM; Lee TY; Chen YJ
    Environ Monit Assess; 2016 Jun; 188(6):383. PubMed ID: 27245603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring and mapping of drought in a semi-arid region: case of the Merguellil watershed, central Tunisia.
    Ben Othman D; Abida H
    Environ Monit Assess; 2022 Mar; 194(4):287. PubMed ID: 35305173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applicability of long-term satellite-based precipitation products for drought indices considering global warming.
    Bai X; Shen W; Wu X; Wang P
    J Environ Manage; 2020 Feb; 255():109846. PubMed ID: 31747628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.