These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 32877808)
1. Coupling of Fe-C and aerobic granular sludge to treat refractory wastewater from a membrane manufacturer in a pilot-scale system. Guo T; Ji Y; Zhao J; Horn H; Li J Water Res; 2020 Nov; 186():116331. PubMed ID: 32877808 [TBL] [Abstract][Full Text] [Related]
2. Utilizing anaerobic substrate distribution for growth of aerobic granular sludge in continuous-flow reactors. Haaksman VA; van Dijk EJH; Al-Zuhairy S; Mulders M; Loosdrecht MCMV; Pronk M Water Res; 2024 Jun; 257():121531. PubMed ID: 38701553 [TBL] [Abstract][Full Text] [Related]
3. Current progress of continuous-flow aerobic granular sludge: A critical review. Samaei SH; Chen J; Xue J Sci Total Environ; 2023 Jun; 875():162633. PubMed ID: 36889385 [TBL] [Abstract][Full Text] [Related]
4. PHA and EPS production from industrial wastewater by conventional activated sludge, membrane bioreactor and aerobic granular sludge technologies: A comprehensive comparison. Traina F; Capodici M; Torregrossa M; Viviani G; Corsino SF Chemosphere; 2024 May; 355():141768. PubMed ID: 38537712 [TBL] [Abstract][Full Text] [Related]
5. Influence of operation mode and wastewater strength on aerobic granulation at pilot scale: Startup period, granular sludge characteristics, and effluent quality. Pishgar R; Dominic JA; Sheng Z; Tay JH Water Res; 2019 Sep; 160():81-96. PubMed ID: 31132565 [TBL] [Abstract][Full Text] [Related]
6. Treatment of real domestic sewage in a pilot-scale aerobic granular sludge reactor: Assessing start-up and operational control. Campos F; Guimarães NR; Maia FC; Sandoval MZ; Bassin JP; Bueno RF; Piveli RP Water Environ Res; 2021 Jun; 93(6):896-905. PubMed ID: 33176037 [TBL] [Abstract][Full Text] [Related]
7. [Effect of Increasing Organic Loading Rate on the Formation and Stabilization Process of Aerobic Granular Sludge]. Liu XP; Wang JF; Qian FY; Wang Y; Chen CJ; Shen YL Huan Jing Ke Xue; 2015 Sep; 36(9):3352-7. PubMed ID: 26717698 [TBL] [Abstract][Full Text] [Related]
8. How can the addition of extracellular polymeric substances (EPS)-based bioflocculant affect aerobic granular sludge (AGS)? Amin Vieira da Costa NP; Libardi N; Ribeiro da Costa RH J Environ Manage; 2022 May; 310():114807. PubMed ID: 35231689 [TBL] [Abstract][Full Text] [Related]
9. Digestibility of waste aerobic granular sludge from a full-scale municipal wastewater treatment system. Guo H; van Lier JB; de Kreuk M Water Res; 2020 Apr; 173():115617. PubMed ID: 32070832 [TBL] [Abstract][Full Text] [Related]
10. Improving aerobic sludge granulation in sequential batch reactor by natural drying: Effluent sludge recovery and feeding back into reactor. Liu J; Li J; Xu D; Sellamuthu B Chemosphere; 2020 Mar; 242():125159. PubMed ID: 31677513 [TBL] [Abstract][Full Text] [Related]
11. Rapid aerobic sludge granulation in an integrated oxidation ditch with two-zone clarifiers. Xu D; Li J; Liu J; Ma T Water Res; 2020 May; 175():115704. PubMed ID: 32208174 [TBL] [Abstract][Full Text] [Related]
12. Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment. Chen Y; Ge J; Wang S; Su H Sci Total Environ; 2020 Oct; 739():140128. PubMed ID: 32758956 [TBL] [Abstract][Full Text] [Related]
13. Effects of high-concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater. Cetin E; Karakas E; Dulekgurgen E; Ovez S; Kolukirik M; Yilmaz G Water Res; 2018 Mar; 131():74-89. PubMed ID: 29275102 [TBL] [Abstract][Full Text] [Related]
14. Impact of hydraulic retention time on swine wastewater treatment by aerobic granular sludge sequencing batch reactor. Wang X; Li J; Zhang X; Chen Z; Shen J; Kang J Environ Sci Pollut Res Int; 2021 Feb; 28(5):5927-5937. PubMed ID: 32981014 [TBL] [Abstract][Full Text] [Related]
15. Cultivating aerobic granular sludge in a developed continuous-flow reactor with two-zone sedimentation tank treating real and low-strength wastewater. Zou J; Tao Y; Li J; Wu S; Ni Y Bioresour Technol; 2018 Jan; 247():776-783. PubMed ID: 30060413 [TBL] [Abstract][Full Text] [Related]
16. Comparison of an anaerobic feed and split anaerobic-aerobic feed on granular sludge development, performance and ecology. Thwaites BJ; Reeve P; Dinesh N; Short MD; van den Akker B Chemosphere; 2017 Apr; 172():408-417. PubMed ID: 28088532 [TBL] [Abstract][Full Text] [Related]
17. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Franca RD; Vieira A; Mata AM; Carvalho GS; Pinheiro HM; Lourenço ND Water Res; 2015 Nov; 85():327-36. PubMed ID: 26343991 [TBL] [Abstract][Full Text] [Related]
18. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors. Li J; Garny K; Neu T; He M; Lindenblatt C; Horn H Water Sci Technol; 2007; 55(8-9):403-11. PubMed ID: 17547011 [TBL] [Abstract][Full Text] [Related]
19. Effect of Seed Sludge Type on Aerobic Granulation, Pollutant Removal and Microbial Community in a Sequencing Batch Reactor Treating Real Textile Wastewater. Zou J; Yang J; He H; Wang X; Mei R; Cai L; Li J Int J Environ Res Public Health; 2022 Sep; 19(17):. PubMed ID: 36078654 [TBL] [Abstract][Full Text] [Related]
20. Rapid start-up of an aerobic granular sludge system for nitrogen and phosphorus removal through seeding chitosan-based sludge aggregates. Zou J; Yu F; Pan J; Pan B; Wu S; Qian M; Li J Sci Total Environ; 2021 Mar; 762():144171. PubMed ID: 33360471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]