These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32878293)

  • 1. Analysis of Membrane Transport Equations for Reverse Electrodialysis (RED) Using Irreversible Thermodynamics.
    Kujawski W; Yaroshchuk A; Zholkovskiy E; Koter I; Koter S
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32878293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L version of the transformed Kedem-Katchalsky equations for membrane transport of electrolyte solutions and internal energy conversion.
    Ślęzak A; Grzegorczyn SM
    Polim Med; 2024; 54(1):45-57. PubMed ID: 38315071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nernst-Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential.
    Kim H; Jeong N; Yang S; Choi J; Lee MS; Nam JY; Jwa E; Kim B; Ryu KS; Choi YW
    Water Res; 2019 Nov; 165():114970. PubMed ID: 31426007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack.
    Zhang B; Gao H; Chen Y
    Environ Sci Technol; 2015 Dec; 49(24):14717-24. PubMed ID: 26560232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy Harvesting from Brines by Reverse Electrodialysis Using Nafion Membranes.
    Avci AH; Messana DA; Santoro S; Tufa RA; Curcio E; Di Profio G; Fontananova E
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32731421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Correlation between the Water Content and Electrolyte Permeability of Cation-Exchange Membranes.
    Izquierdo-Gil MA; Villaluenga JPG; Muñoz S; Barragán VM
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane.
    Tsai TC; Liu CW; Yang RJ
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse electrodialysis (RED) using a bipolar membrane to suppress inorganic fouling around the cathode.
    Han JH; Jeong N; Kim CS; Hwang KS; Kim H; Nam JY; Jwa E; Yang S; Choi J
    Water Res; 2019 Dec; 166():115078. PubMed ID: 31542547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.
    Lee JY; Kim JH; Lee JH; Kim S; Moon SH
    Environ Sci Technol; 2015 Jul; 49(14):8872-7. PubMed ID: 26114376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations of Ion Composition and Power Efficiency in a Reverse Electrodialysis Heat Engine.
    Luo F; Wang Y; Sha M; Wei Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31766700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipolar membrane reverse electrodialysis for the sustainable recovery of energy from pH gradients of industrial wastewater: Performance prediction by a validated process model.
    Culcasi A; Gurreri L; Micale G; Tamburini A
    J Environ Manage; 2021 Jun; 287():112319. PubMed ID: 33721763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling.
    Mareev S; Gorobchenko A; Ivanov D; Anokhin D; Nikonenko V
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement.
    Stenina I; Golubenko D; Nikonenko V; Yaroslavtsev A
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32752236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time evolution of NaCl flux through the microbial cellulose membrane with concentration polarization.
    Grzegorczyn S; Michalska-Małecka K; Slezak A
    Polim Med; 2008; 38(2):11-20. PubMed ID: 18810983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 6. Evaluation of Kij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):277-95. PubMed ID: 24596042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the Microheterogeneous Model to Assess the Applicability of Ion-Exchange Membranes in the Process of Generating Electricity from a Concentration Gradient.
    Davydov D; Nosova E; Loza S; Achoh A; Korzhov A; Sharafan M; Melnikov S
    Membranes (Basel); 2021 May; 11(6):. PubMed ID: 34071631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs.
    Kaya TZ; Altıok E; Güler E; Kabay N
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-run operation of a reverse electrodialysis system fed with wastewaters.
    Luque Di Salvo J; Cosenza A; Tamburini A; Micale G; Cipollina A
    J Environ Manage; 2018 Jul; 217():871-887. PubMed ID: 29660712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.