BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32878321)

  • 1. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection.
    Ju Z; He JJ
    Anal Biochem; 2018 Jun; 550():1-7. PubMed ID: 29641975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features.
    Xu Y; Yang Y; Ding J; Li C
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF-GlutarySite: a random forest based predictor for glutarylation sites.
    Al-Barakati HJ; Saigo H; Newman RH; Kc DB
    Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FCCCSR_Glu: a semi-supervised learning model based on FCCCSR algorithm for prediction of glutarylation sites.
    Ning Q; Qi Z; Wang Y; Deng A; Chen C
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide Lysine Glutarylation Profiling of the Mycobacterium tuberculosis H37Rv.
    Xie L; Wang G; Yu Z; Zhou M; Li Q; Huang H; Xie J
    J Proteome Res; 2016 Apr; 15(4):1379-85. PubMed ID: 26903315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier.
    Dou L; Li X; Zhang L; Xiang H; Xu L
    J Proteome Res; 2021 Jan; 20(1):191-201. PubMed ID: 33090794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepDN_iGlu: prediction of lysine glutarylation sites based on attention residual learning method and DenseNet.
    Jia J; Sun M; Wu G; Qiu W
    Math Biosci Eng; 2023 Jan; 20(2):2815-2830. PubMed ID: 36899559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mal-Light: Enhancing Lysine Malonylation Sites Prediction Problem Using Evolutionary-based Features.
    Ahmad W; Arafat E; Taherzadeh G; Sharma A; Dipta SR; Dehzangi A; Shatabda S
    IEEE Access; 2020; 8():77888-77902. PubMed ID: 33354488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iProtGly-SS: A Tool to Accurately Predict Protein Glycation Site Using Structural-Based Features.
    Dehzangi I; Sharma A; Shatabda S
    Methods Mol Biol; 2022; 2499():125-134. PubMed ID: 35696077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting lysine methylation sites using a convolutional neural network.
    Spadaro A; Sharma A; Dehzangi I
    Methods; 2024 Jun; 226():127-132. PubMed ID: 38604414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix.
    Chandra A; Sharma A; Dehzangi A; Shigemizu D; Tsunoda T
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):57. PubMed ID: 31856704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier.
    Liu X; Zhu B; Dai XW; Xu ZA; Li R; Qian Y; Lu YP; Zhang W; Liu Y; Zheng J
    BMC Genomics; 2023 Dec; 24(1):765. PubMed ID: 38082413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iGluK-Deep: computational identification of lysine glutarylation sites using deep neural networks with general pseudo amino acid compositions.
    Naseer S; Ali RF; Khan YD; Dominic PDD
    J Biomol Struct Dyn; 2022; 40(22):11691-11704. PubMed ID: 34396935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction.
    López Y; Sharma A; Dehzangi A; Lal SP; Taherzadeh G; Sattar A; Tsunoda T
    BMC Genomics; 2018 Jan; 19(Suppl 1):923. PubMed ID: 29363424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProtTrans-Glutar: Incorporating Features From Pre-trained Transformer-Based Models for Predicting Glutarylation Sites.
    Indriani F; Mahmudah KR; Purnama B; Satou K
    Front Genet; 2022; 13():885929. PubMed ID: 35711929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering functional roles of protein succinylation and glutarylation using genetic code expansion.
    Weyh M; Jokisch ML; Nguyen TA; Fottner M; Lang K
    Nat Chem; 2024 Jun; 16(6):913-921. PubMed ID: 38531969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.