These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 32878930)
1. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans. Marton T; Maufrais C; d'Enfert C; Legrand M mSphere; 2020 Sep; 5(5):. PubMed ID: 32878930 [TBL] [Abstract][Full Text] [Related]
2. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome. Evans BA; Bernstein DA mSphere; 2021 May; 6(3):. PubMed ID: 34011687 [No Abstract] [Full Text] [Related]
3. CRISPR-Mediated Genome Editing in the Human Fungal Pathogen C. albicans. Evans BA; Bernstein DA Methods Mol Biol; 2022; 2542():3-12. PubMed ID: 36008653 [TBL] [Abstract][Full Text] [Related]
4. CRISPR-mediated Genome Editing of the Human Fungal Pathogen Candida albicans. Evans BA; Pickerill ES; Vyas VK; Bernstein DA J Vis Exp; 2018 Nov; (141):. PubMed ID: 30507925 [TBL] [Abstract][Full Text] [Related]
8. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata. Maroc L; Fairhead C Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617 [TBL] [Abstract][Full Text] [Related]
9. Targeted Genetic Changes in Candida albicans Using Transient CRISPR-Cas9 Expression. Huang MY; Cravener MC; Mitchell AP Curr Protoc; 2021 Jan; 1(1):e19. PubMed ID: 33491919 [TBL] [Abstract][Full Text] [Related]
10. CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis. Lombardi L; Bergin SA; Ryan A; Zuniga-Soto E; Butler G mSphere; 2022 Dec; 7(6):e0039322. PubMed ID: 36416551 [TBL] [Abstract][Full Text] [Related]
11. Genome Editing Using CRISPR/Cas9 System in the Rice Blast Fungus. Arazoe T Methods Mol Biol; 2021; 2356():149-160. PubMed ID: 34236684 [TBL] [Abstract][Full Text] [Related]
12. Rapid Hypothesis Testing in Candida albicans Clinical Isolates Using a Cloning-Free, Modular, and Recyclable System for CRISPR-Cas9 Mediated Mutant and Revertant Construction. Liu J; Vogel AK; Miao J; Carnahan JA; Lowes DJ; Rybak JM; Peters BM Microbiol Spectr; 2022 Jun; 10(3):e0263021. PubMed ID: 35612314 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9-Mediated Genome Editing of Trichoderma reesei. Zou G; Zhou Z Methods Mol Biol; 2021; 2234():87-98. PubMed ID: 33165782 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha. Sugano SS; Nishihama R Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367 [TBL] [Abstract][Full Text] [Related]
16. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica. Schwartz C; Wheeldon I Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237 [TBL] [Abstract][Full Text] [Related]
17. CRISPR-Cas9-Guided Genome Engineering in C. elegans. Kim HM; Colaiácovo MP Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893 [TBL] [Abstract][Full Text] [Related]
18. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Song R; Zhai Q; Sun L; Huang E; Zhang Y; Zhu Y; Guo Q; Tian Y; Zhao B; Lu H Appl Microbiol Biotechnol; 2019 Sep; 103(17):6919-6932. PubMed ID: 31332488 [TBL] [Abstract][Full Text] [Related]
19. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing. Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727 [TBL] [Abstract][Full Text] [Related]
20. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae. Levi O; Arava Y Curr Microbiol; 2020 Mar; 77(3):468-478. PubMed ID: 31901956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]