These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 32878930)
21. Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation. Huang WP; Du YJ; Yang Y; He JN; Lei Q; Yang XY; Zhang KQ; Niu XM Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769197 [No Abstract] [Full Text] [Related]
22. New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi. Vyas VK; Bushkin GG; Bernstein DA; Getz MA; Sewastianik M; Barrasa MI; Bartel DP; Fink GR mSphere; 2018 Apr; 3(2):. PubMed ID: 29695624 [TBL] [Abstract][Full Text] [Related]
23. Use of RNA-Protein Complexes for Genome Editing in Non- Grahl N; Demers EG; Crocker AW; Hogan DA mSphere; 2017; 2(3):. PubMed ID: 28657070 [TBL] [Abstract][Full Text] [Related]
24. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352 [TBL] [Abstract][Full Text] [Related]
25. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans. Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514 [TBL] [Abstract][Full Text] [Related]
26. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species. Wang P mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980 [No Abstract] [Full Text] [Related]
27. Design and Generation of a CRISPR Interference System for Genetic Repression and Essential Gene Analysis in the Fungal Pathogen Candida albicans. Wensing L; Shapiro RS Methods Mol Biol; 2022; 2377():69-88. PubMed ID: 34709611 [TBL] [Abstract][Full Text] [Related]
28. Implementation of a CRISPR-Based System for Gene Regulation in Román E; Coman I; Prieto D; Alonso-Monge R; Pla J mSphere; 2019 Feb; 4(1):. PubMed ID: 30760608 [TBL] [Abstract][Full Text] [Related]
29. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci. Najah S; Saulnier C; Pernodet JL; Bury-Moné S BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153 [TBL] [Abstract][Full Text] [Related]
30. New insights of CRISPR technology in human pathogenic fungi. Román E; Prieto D; Alonso-Monge R; Pla J Future Microbiol; 2019 Sep; 14():1243-1255. PubMed ID: 31625446 [TBL] [Abstract][Full Text] [Related]
31. Optimizing Systems for Cas9 Expression in Toxoplasma gondii. Markus BM; Bell GW; Lorenzi HA; Lourido S mSphere; 2019 Jun; 4(3):. PubMed ID: 31243081 [TBL] [Abstract][Full Text] [Related]
33. Rapid and marker-free gene replacement in citric acid-producing Aspergillus tubingensis (A. niger) WU-2223L by the CRISPR/Cas9 system-based genome editing technique using DNA fragments encoding sgRNAs. Yoshioka I; Kirimura K J Biosci Bioeng; 2021 Jun; 131(6):579-588. PubMed ID: 33612423 [TBL] [Abstract][Full Text] [Related]
34. Non-homologous end-joining-deficient filamentous fungal strains mitigate the impact of off-target mutations during the application of CRISPR/Cas9. Garrigues S; Peng M; Kun RS; de Vries RP mBio; 2023 Aug; 14(4):e0066823. PubMed ID: 37486124 [TBL] [Abstract][Full Text] [Related]
35. Optimization of genome editing through CRISPR-Cas9 engineering. Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770 [TBL] [Abstract][Full Text] [Related]
36. Dramatic Improvement of CRISPR/Cas9 Editing in Ng H; Dean N mSphere; 2017; 2(2):. PubMed ID: 28435892 [TBL] [Abstract][Full Text] [Related]
37. Host-Induced Genome Instability Rapidly Generates Phenotypic Variation across Candida albicans Strains and Ploidy States. Smith AC; Hickman MA mSphere; 2020 Jun; 5(3):. PubMed ID: 32493724 [No Abstract] [Full Text] [Related]