BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32879222)

  • 1. Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis.
    Abe I
    Chem Pharm Bull (Tokyo); 2020; 68(9):823-831. PubMed ID: 32879222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual chemistries in fungal meroterpenoid biosynthesis.
    Matsuda Y; Awakawa T; Mori T; Abe I
    Curr Opin Chem Biol; 2016 Apr; 31():1-7. PubMed ID: 26610189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterodimeric Non-heme Iron Enzymes in Fungal Meroterpenoid Biosynthesis.
    Li X; Awakawa T; Mori T; Ling M; Hu D; Wu B; Abe I
    J Am Chem Soc; 2021 Dec; 143(50):21425-21432. PubMed ID: 34881885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis.
    Nakashima Y; Mori T; Nakamura H; Awakawa T; Hoshino S; Senda M; Senda T; Abe I
    Nat Commun; 2018 Jan; 9(1):104. PubMed ID: 29317628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad.
    Bassan A; Borowski T; Siegbahn PE
    Dalton Trans; 2004 Oct; (20):3153-62. PubMed ID: 15483690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis.
    Song H; Naowarojna N; Cheng R; Lopez J; Liu P
    Adv Protein Chem Struct Biol; 2019; 117():1-61. PubMed ID: 31564305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/α-ketoglutarate-dependent oxygenase SptF.
    Tao H; Mori T; Chen H; Lyu S; Nonoyama A; Lee S; Abe I
    Nat Commun; 2022 Jan; 13(1):95. PubMed ID: 35013177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of the PrhA (V150L/A232S) double mutant involved in the fungal meroterpenoid biosynthetic pathway: a QM/MM study.
    Bai J; Yan L; Liu Y
    Phys Chem Chem Phys; 2019 Nov; 21(46):25658-25668. PubMed ID: 31725143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Do Electrostatic Perturbations of the Protein Affect the Bifurcation Pathways of Substrate Hydroxylation versus Desaturation in the Nonheme Iron-Dependent Viomycin Biosynthesis Enzyme?
    Ali HS; Henchman RH; Warwicker J; de Visser SP
    J Phys Chem A; 2021 Mar; 125(8):1720-1737. PubMed ID: 33620220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Key Dioxygenases that Diverged the Paraherquonin and Acetoxydehydroaustin Pathways in Penicillium brasilianum.
    Matsuda Y; Iwabuchi T; Fujimoto T; Awakawa T; Nakashima Y; Mori T; Zhang H; Hayashi F; Abe I
    J Am Chem Soc; 2016 Sep; 138(38):12671-7. PubMed ID: 27602587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis.
    Matsuda Y; Awakawa T; Wakimoto T; Abe I
    J Am Chem Soc; 2013 Jul; 135(30):10962-5. PubMed ID: 23865690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidomain P450 Epoxidase and a Terpene Cyclase from the Ascochlorin Biosynthetic Pathway in Fusarium sp.
    Quan Z; Awakawa T; Wang D; Hu Y; Abe I
    Org Lett; 2019 Apr; 21(7):2330-2334. PubMed ID: 30900461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases.
    Itoh T; Tokunaga K; Matsuda Y; Fujii I; Abe I; Ebizuka Y; Kushiro T
    Nat Chem; 2010 Oct; 2(10):858-64. PubMed ID: 20861902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis.
    Awakawa T; Mori T; Ushimaru R; Abe I
    Nat Prod Rep; 2023 Jan; 40(1):46-61. PubMed ID: 35642933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a key prenyltransferase involved in biosynthesis of the most abundant fungal meroterpenoids derived from 3,5-dimethylorsellinic acid.
    Itoh T; Tokunaga K; Radhakrishnan EK; Fujii I; Abe I; Ebizuka Y; Kushiro T
    Chembiochem; 2012 May; 13(8):1132-5. PubMed ID: 22549923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-heme iron protein with heme tendencies: an investigation of the substrate specificity of thymine hydroxylase.
    Thornburg LD; Lai MT; Wishnok JS; Stubbe J
    Biochemistry; 1993 Dec; 32(50):14023-33. PubMed ID: 8268181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of transmembrane terpene cyclases involved in fungal meroterpenoid biosynthesis.
    Tang J; Matsuda Y
    Methods Enzymol; 2024; 699():419-445. PubMed ID: 38942513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies of substrate interactions with clavaminate synthase 2, a multifunctional alpha-KG-dependent non-heme iron enzyme: correlation with mechanisms and reactivities.
    Zhou J; Kelly WL; Bachmann BO; Gunsior M; Townsend CA; Solomon EI
    J Am Chem Soc; 2001 Aug; 123(30):7388-98. PubMed ID: 11472170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidations catalyzed by fungal peroxygenases.
    Hofrichter M; Ullrich R
    Curr Opin Chem Biol; 2014 Apr; 19():116-25. PubMed ID: 24607599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in and comparison of the catalytic properties of heme and non-heme enzymes with a central oxo-iron group.
    de Visser SP
    Angew Chem Int Ed Engl; 2006 Mar; 45(11):1790-3. PubMed ID: 16470900
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.