BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32879253)

  • 1. Involvement of metal transporters in the intestinal uptake of cadmium.
    Ohta H; Ohba K
    J Toxicol Sci; 2020; 45(9):539-548. PubMed ID: 32879253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats.
    Park JD; Cherrington NJ; Klaassen CD
    Toxicol Sci; 2002 Aug; 68(2):288-94. PubMed ID: 12151624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo.
    Suzuki T; Momoi K; Hosoyamada M; Kimura M; Shibasaki T
    Toxicol Appl Pharmacol; 2008 Mar; 227(3):462-7. PubMed ID: 18076961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The longitudinal distribution of cadmium, zinc, copper, iron, and metallothionein in the small-intestinal mucosa of rats after administration of cadmium chloride.
    Elsenhans B; Kolb K; Schümann K; Forth W
    Biol Trace Elem Res; 1994; 41(1-2):31-46. PubMed ID: 7946907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium interaction with essential metals (Zn, Cu, Fe), metabolism metallothionein, and ceruloplasmin in pregnant rats and fetuses.
    Chmielnicka J; Sowa B
    Ecotoxicol Environ Saf; 1996 Dec; 35(3):277-81. PubMed ID: 9007005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper stabilizes the Menkes copper-transporting ATPase (Atp7a) protein expressed in rat intestinal epithelial cells.
    Xie L; Collins JF
    Am J Physiol Cell Physiol; 2013 Feb; 304(3):C257-62. PubMed ID: 23174565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells.
    Fujishiro H; Hamao S; Tanaka R; Kambe T; Himeno S
    J Toxicol Sci; 2017; 42(5):559-567. PubMed ID: 28904291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mucosal metallothionein in small intestine on tissue distribution of cadmium after oral administration of cadmium compounds.
    Min KS; Nakatsubo T; Kawamura S; Fujita Y; Onosaka S; Tanaka K
    Toxicol Appl Pharmacol; 1992 Apr; 113(2):306-10. PubMed ID: 1561640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of metal speciation in the exposure medium on the toxicity, bioavailability and bio-reactivity of copper, silver, cadmium and zinc in the rainbow trout gut cell line (RTgutGC).
    Ibrahim M; Oldham D; Minghetti M
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Oct; 236():108816. PubMed ID: 32502601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of intestinal calcium transporter 1 and metallothionein in cadmium accumulation in the liver and kidney of mice fed a low-calcium diet.
    Min KS; Ueda H; Tanaka K
    Toxicol Lett; 2008 Jan; 176(1):85-92. PubMed ID: 18054826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of iron absorption by in situ ligated small intestinal loops of broilers involved in iron transporters.
    Zhang LY; Liao XD; Zhang LY; Lu L; Luo XG
    J Anim Sci; 2016 Dec; 94(12):5219-5229. PubMed ID: 28046154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gastrointestinal uptake of trace elements are changed during the course of a common human viral (Coxsackievirus B3) infection in mice.
    Ilbäck NG; Frisk P; Tallkvist J; Gadhasson IL; Blomberg J; Friman G
    J Trace Elem Med Biol; 2008; 22(2):120-30. PubMed ID: 18565424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human placental cell line HTR-8/SVneo accumulates cadmium by divalent metal transporters DMT1 and ZIP14.
    Widhalm R; Ellinger I; Granitzer S; Forsthuber M; Bajtela R; Gelles K; Hartig PY; Hengstschläger M; Zeisler H; Salzer H; Gundacker C
    Metallomics; 2020 Nov; 12(11):1822-1833. PubMed ID: 33146651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells.
    Fujishiro H; Yano Y; Takada Y; Tanihara M; Himeno S
    Metallomics; 2012 Jul; 4(7):700-8. PubMed ID: 22534978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption and distribution of cadmium (Cd), copper and zinc following oral subchronic low level administration to rats of different binding forms of cadmium (Cd-acetate, Cd-metallothionein, Cd-glutathione).
    Müller L; Abel J; Ohnesorge FK
    Toxicology; 1986 May; 39(2):187-95. PubMed ID: 3705082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and molecular responses of suckling rat pups and human intestinal Caco-2 cells to copper treatment.
    Bauerly KA; Kelleher SL; Lönnerdal B
    J Nutr Biochem; 2004 Mar; 15(3):155-62. PubMed ID: 15023397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dietary zinc depletion and food restriction on intestinal transport of cadmium in the rat.
    Hoadley JE; Cousins RJ
    Proc Soc Exp Biol Med; 1985 Nov; 180(2):296-302. PubMed ID: 4048167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake.
    Kim DW; Kim KY; Choi BS; Youn P; Ryu DY; Klaassen CD; Park JD
    Arch Toxicol; 2007 May; 81(5):327-34. PubMed ID: 17031680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of intestinal metallothionein in absorption and distribution of orally administered cadmium.
    Min KS; Fujita Y; Onosaka S; Tanaka K
    Toxicol Appl Pharmacol; 1991 Jun; 109(1):7-16. PubMed ID: 2038751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interactions of iron with other divalent metals in the intestinal tract of a freshwater teleost, rainbow trout (Oncorhynchusmykiss).
    Kwong RW; Niyogi S
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Nov; 150(4):442-9. PubMed ID: 19584005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.