These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32879412)

  • 1. The impact of the AMV on Eurasian summer hydrological cycle.
    Nicolì D; Bellucci A; Iovino D; Ruggieri P; Gualdi S
    Sci Rep; 2020 Sep; 10(1):14444. PubMed ID: 32879412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation.
    Sun C; Li J; Zhao S
    Sci Rep; 2015 Nov; 5():16853. PubMed ID: 26593402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible linkage of Eurasian heat wave and East Asian heavy rainfall in Relation to the Rapid Arctic warming.
    Nakamura T; Sato T
    Environ Res; 2022 Jun; 209():112881. PubMed ID: 35122744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between decadal-to-multidecadal oceanic variability and sudden stratospheric warmings.
    Ayarzagüena B; Manzini E; Calvo N; Matei D
    Ann N Y Acad Sci; 2021 Nov; 1504(1):215-229. PubMed ID: 34247389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arctic-Eurasian climate linkage induced by tropical ocean variability.
    Matsumura S; Kosaka Y
    Nat Commun; 2019 Aug; 10(1):3441. PubMed ID: 31371710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separating individual contributions of major Siberian rivers in the Transpolar Drift of the Arctic Ocean.
    Paffrath R; Laukert G; Bauch D; Rutgers van der Loeff M; Pahnke K
    Sci Rep; 2021 Apr; 11(1):8216. PubMed ID: 33859225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annually resolved Atlantic sea surface temperature variability over the past 2,900 y.
    Lapointe F; Bradley RS; Francus P; Balascio NL; Abbott MB; Stoner JS; St-Onge G; De Coninck A; Labarre T
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27171-27178. PubMed ID: 33046633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability.
    Tokinaga H; Xie SP; Mukougawa H
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6227-6232. PubMed ID: 28559341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freshwater transport between the Kara, Laptev, and East-Siberian seas.
    Osadchiev AA; Pisareva MN; Spivak EA; Shchuka SA; Semiletov IP
    Sci Rep; 2020 Aug; 10(1):13041. PubMed ID: 32747694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean.
    Sonke JE; Teisserenc R; Heimbürger-Boavida LE; Petrova MV; Marusczak N; Le Dantec T; Chupakov AV; Li C; Thackray CP; Sunderland EM; Tananaev N; Pokrovsky OS
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11586-E11594. PubMed ID: 30478039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric blocking and Atlantic multidecadal ocean variability.
    Häkkinen S; Rhines PB; Worthen DL
    Science; 2011 Nov; 334(6056):655-9. PubMed ID: 22053046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term impact of Amazon river runoff on northern hemispheric climate.
    Jahfer S; Vinayachandran PN; Nanjundiah RS
    Sci Rep; 2017 Sep; 7(1):10989. PubMed ID: 28887467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensification of hot Eurasian summers by climate change and land-atmosphere interactions.
    Sato T; Nakamura T
    Sci Rep; 2019 Jul; 9(1):10866. PubMed ID: 31350447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar-wind-magnetosphere energy influences the interannual variability of the northern-hemispheric winter climate.
    He S; Wang H; Li F; Li H; Wang C
    Natl Sci Rev; 2020 Jan; 7(1):141-148. PubMed ID: 34692028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-arctic river fluxes of polychlorinated biphenyls.
    Carrizo D; Gustafsson Ö
    Environ Sci Technol; 2011 Oct; 45(19):8377-84. PubMed ID: 21863827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing glacier retreat and its impact on water resources in a headwater of Yangtze River based on CMIP6 projections.
    Gao H; Feng Z; Zhang T; Wang Y; He X; Li H; Pan X; Ren Z; Chen X; Zhang W; Duan Z
    Sci Total Environ; 2021 Apr; 765():142774. PubMed ID: 33572035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using stable isotopes to assess river water dynamics and groundwater input in the largest European Arctic river (Severnaya Dvina).
    Malov A; Pokrovsky O; Chupakov A
    Environ Monit Assess; 2020 Jun; 192(7):444. PubMed ID: 32562061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced particulate Hg export at the permafrost boundary, western Siberia.
    Lim AG; Sonke JE; Krickov IV; Manasypov RM; Loiko SV; Pokrovsky OS
    Environ Pollut; 2019 Nov; 254(Pt B):113083. PubMed ID: 31473386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.
    McCarthy GD; Haigh ID; Hirschi JJ; Grist JP; Smeed DA
    Nature; 2015 May; 521(7553):508-10. PubMed ID: 26017453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.
    Mouri G; Nakano K; Tsuyama I; Tanaka N
    Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.