These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32879428)

  • 1. A hydrodynamics assessment of the hammerhead shark cephalofoil.
    Gaylord MK; Blades EL; Parsons GR
    Sci Rep; 2020 Sep; 10(1):14495. PubMed ID: 32879428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructional morphology within the head of hammerhead sharks (sphyrnidae).
    Mara KR; Motta PJ; Martin AP; Hueter RE
    J Morphol; 2015 May; 276(5):526-39. PubMed ID: 25684106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced visual fields in hammerhead sharks.
    McComb DM; Tricas TC; Kajiura SM
    J Exp Biol; 2009 Dec; 212(Pt 24):4010-8. PubMed ID: 19946079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional variation in undulatory kinematics of two hammerhead species: the bonnethead (
    Hoffmann SL; Warren SM; Porter ME
    J Exp Biol; 2017 Sep; 220(Pt 18):3336-3343. PubMed ID: 28705829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maneuvering in juvenile carcharhinid and sphyrnid sharks: the role of the hammerhead shark cephalofoil.
    Kajiura SM; Forni JB; Summers AP
    Zoology (Jena); 2003; 106(1):19-28. PubMed ID: 16351888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrosensorial pore system of the cephalofoil in the four most common species of hammerhead shark (Elasmobranchii: Sphyrnidae) from the Southwestern Atlantic.
    Mello W
    C R Biol; 2009 Apr; 332(4):404-12. PubMed ID: 19304271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroreception in juvenile scalloped hammerhead and sandbar sharks.
    Kajiura SM; Holland KN
    J Exp Biol; 2002 Dec; 205(Pt 23):3609-21. PubMed ID: 12409487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational study of the hydrodynamics in the nasal region of a hammerhead shark (Sphyrna tudes): implications for olfaction.
    Rygg AD; Cox JP; Abel R; Webb AG; Smith NB; Craven BA
    PLoS One; 2013; 8(3):e59783. PubMed ID: 23555780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olfactory morphology of carcharhinid and sphyrnid sharks: does the cephalofoil confer a sensory advantage?
    Kajiura SM; Forni JB; Summers AP
    J Morphol; 2005 Jun; 264(3):253-63. PubMed ID: 15549717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Great hammerhead sharks swim on their side to reduce transport costs.
    Payne NL; Iosilevskii G; Barnett A; Fischer C; Graham RT; Gleiss AC; Watanabe YY
    Nat Commun; 2016 Jul; 7():12289. PubMed ID: 27457414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic development in the bonnethead (Sphyrna tiburo), a viviparous hammerhead shark.
    Byrum SR; Frazier BS; Grubbs RD; Naylor GJP; Fraser GJ
    Dev Dyn; 2024 Mar; 253(3):351-362. PubMed ID: 37767812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing.
    Wen L; Weaver JC; Thornycroft PJ; Lauder GV
    Bioinspir Biomim; 2015 Nov; 10(6):066010. PubMed ID: 26579634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic properties of biomimetic shark skin: effect of denticle size and swimming speed.
    Domel AG; Domel G; Weaver JC; Saadat M; Bertoldi K; Lauder GV
    Bioinspir Biomim; 2018 Aug; 13(5):056014. PubMed ID: 30018184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional shape of natural riblets in the white shark: relationship between the denticle morphology and swimming speed of sharks.
    Sayama S; Natsuhara M; Shinohara G; Maeda M; Tanaka H
    J R Soc Interface; 2024 Aug; 21(217):20240063. PubMed ID: 39093716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shark skin-inspired designs that improve aerodynamic performance.
    Domel AG; Saadat M; Weaver JC; Haj-Hariri H; Bertoldi K; Lauder GV
    J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29436512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata.
    Wilga CD; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 15):2261-78. PubMed ID: 10887066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review.
    Dean B; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4775-806. PubMed ID: 20855320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithmic-driven design of shark denticle bioinspired structures for superior aerodynamic properties.
    Ott J; Lazalde M; Gu GX
    Bioinspir Biomim; 2020 Jan; 15(2):026001. PubMed ID: 31775125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional morphology of the pectoral fins in bamboo sharks, Chiloscyllium plagiosum: benthic vs. pelagic station-holding.
    Wilga CD; Lauder GV
    J Morphol; 2001 Sep; 249(3):195-209. PubMed ID: 11517464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological characterization of the skin of shortfin mako shark Isurus oxyrinchus and preliminary study of the hydrodynamic behaviour through computational fluid dynamics.
    Díez G; Soto M; Blanco JM
    J Fish Biol; 2015 Jul; 87(1):123-37. PubMed ID: 26044174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.