These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 32879555)
1. Range and Speed of Rotor Walks on Trees. Huss W; Sava-Huss E J Theor Probab; 2020; 33(3):1657-1690. PubMed ID: 32879555 [TBL] [Abstract][Full Text] [Related]
2. Escape regimes of biased random walks on Galton-Watson trees. Bowditch A Probab Theory Relat Fields; 2018; 170(3):685-768. PubMed ID: 31258234 [TBL] [Abstract][Full Text] [Related]
3. Localization transition of biased random walks on random networks. Sood V; Grassberger P Phys Rev Lett; 2007 Aug; 99(9):098701. PubMed ID: 17931043 [TBL] [Abstract][Full Text] [Related]
4. Seeing the trees for the wood: random walks or bounded fluctuations of population size? den Boer PJ Oecologia; 1991 May; 86(4):484-491. PubMed ID: 28313329 [TBL] [Abstract][Full Text] [Related]
5. Exact Derivation of a Finite-Size Scaling Law and Corrections to Scaling in the Geometric Galton-Watson Process. Corral Á; Garcia-Millan R; Font-Clos F PLoS One; 2016; 11(9):e0161586. PubMed ID: 27584596 [TBL] [Abstract][Full Text] [Related]
6. Graph limits of random graphs from a subset of connected k-trees. Drmota M; Jin EY; Stufler B Random Struct Algorithms; 2019 Aug; 55(1):125-152. PubMed ID: 31423073 [TBL] [Abstract][Full Text] [Related]
7. Phase transition, scaling of moments, and order-parameter distributions in Brownian particles and branching processes with finite-size effects. Corral Á; Garcia-Millan R; Moloney NR; Font-Clos F Phys Rev E; 2018 Jun; 97(6-1):062156. PubMed ID: 30011443 [TBL] [Abstract][Full Text] [Related]
8. Return times of random walk on generalized random graphs. Masuda N; Konno N Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066113. PubMed ID: 15244673 [TBL] [Abstract][Full Text] [Related]
9. Continuous time random walks under Markovian resetting. Méndez V; Masó-Puigdellosas A; Sandev T; Campos D Phys Rev E; 2021 Feb; 103(2-1):022103. PubMed ID: 33736111 [TBL] [Abstract][Full Text] [Related]
10. Power-law random walks. Vignat C; Plastino A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051124. PubMed ID: 17279894 [TBL] [Abstract][Full Text] [Related]
11. STATISTICAL TESTS FOR LARGE TREE-STRUCTURED DATA. Bharath K; Kambadur P; Dey DK; Rao A; Baladandayuthapani V J Am Stat Assoc; 2017; 112(520):1733-1743. PubMed ID: 37013199 [TBL] [Abstract][Full Text] [Related]
12. Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. Zhang Z; Wu B; Zhang H; Zhou S; Guan J; Wang Z Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031118. PubMed ID: 20365708 [TBL] [Abstract][Full Text] [Related]
13. Directed random walks on hierarchical trees with continuous branching: a renormalization group approach. Saakian DB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011109. PubMed ID: 22400514 [TBL] [Abstract][Full Text] [Related]
14. Steady state and mean recurrence time for random walks on stochastic temporal networks. Speidel L; Lambiotte R; Aihara K; Masuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012806. PubMed ID: 25679656 [TBL] [Abstract][Full Text] [Related]
15. Optimal and suboptimal networks for efficient navigation measured by mean-first passage time of random walks. Zhang Z; Sheng Y; Hu Z; Chen G Chaos; 2012 Dec; 22(4):043129. PubMed ID: 23278064 [TBL] [Abstract][Full Text] [Related]
16. Large Deviations for Random Trees. Bakhtin Y; Heitsch C J Stat Phys; 2008 Aug; 132(3):551-560. PubMed ID: 20216937 [TBL] [Abstract][Full Text] [Related]
17. Constrained spin-dynamics description of random walks on hierarchical scale-free networks. Noh JD; Rieger H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036111. PubMed ID: 15089365 [TBL] [Abstract][Full Text] [Related]
18. Random recursive trees and the elephant random walk. Kürsten R Phys Rev E; 2016 Mar; 93(3):032111. PubMed ID: 27078296 [TBL] [Abstract][Full Text] [Related]
19. Conditions for escape of a rotor in a rotary nanobearing from short triple-wall nanotubes. Shi J; Liu LN; Cai K; Qin QH Sci Rep; 2017 Jul; 7(1):6772. PubMed ID: 28755000 [TBL] [Abstract][Full Text] [Related]
20. Law of large numbers for the drift of the two-dimensional wreath product. Erschler A; Zheng T Probab Theory Relat Fields; 2022; 182(3-4):999-1033. PubMed ID: 35509287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]