These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32879914)

  • 1. Structure aware Runge-Kutta time stepping for spacetime tents.
    Gopalakrishnan J; Schöberl J; Wintersteiger C
    SN Partial Differ Equ Appl; 2020; 1(4):19. PubMed ID: 32879914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge-Kutta and
    Gwinner J; Thalhammer M
    Found Comut Math; 2014; 14(5):913-949. PubMed ID: 26029034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of reduced models for blood flow using Runge-Kutta discontinuous Galerkin methods.
    Puelz C; Čanić S; Rivière B; Rusin CG
    Appl Numer Math; 2017 May; 115():114-141. PubMed ID: 29081563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Runge-Kutta Discontinuous Galerkin Method with Conservation Constraint to Improve CFL Condition for Solving Conservation Laws.
    Xu Z; Chen XY; Liu Y
    J Comput Phys; 2014 Dec; 278():348-377. PubMed ID: 25414520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discontinuous Galerkin time domain analysis of electromagnetic scattering from dispersive periodic nanostructures at oblique incidence.
    Bao H; Kang L; Campbell SD; Werner DH
    Opt Express; 2019 Apr; 27(9):13116-13128. PubMed ID: 31052841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid variable-step computation of dynamic convolutions and Volterra-type integro-differential equations: RK45 Fehlberg, RK4.
    Ndi Azese M
    Heliyon; 2024 Jul; 10(13):e33737. PubMed ID: 39071703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Runge-Kutta time semidiscretizations of semilinear PDEs with non-smooth data.
    Wulff C; Evans C
    Numer Math (Heidelb); 2016; 134(2):413-440. PubMed ID: 28615741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping.
    Mukhsar ; Wibawa GNA; Tenriawaru A; Usman I; Firihu MZ; Variani VI; Mansur ABF; Basori AH
    MethodsX; 2023; 10():101979. PubMed ID: 36619373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral Analysis of High Order Continuous FEM for Hyperbolic PDEs on Triangular Meshes: Influence of Approximation, Stabilization, and Time-Stepping.
    Michel S; Torlo D; Ricchiuto M; Abgrall R
    J Sci Comput; 2023; 94(3):49. PubMed ID: 36699619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY.
    Rackauckas C; Nie Q
    Discrete Continuous Dyn Syst Ser B; 2017; 22(7):2731-2761. PubMed ID: 29527134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From
    Bolis A; Cantwell CD; Kirby RM; Sherwin SJ
    Int J Numer Methods Fluids; 2014 Jul; 75(8):591-607. PubMed ID: 25892840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Galerkin Method for Solving Strongly Nonlinear Oscillators.
    Salas AHS
    ScientificWorldJournal; 2022; 2022():8141227. PubMed ID: 36118289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Higher-Order Galerkin Time Discretization and Numerical Comparisons for Two Models of HIV Infection.
    Attaullah ; Yüzbaşı Ş; Alyobi S; Yassen MF; Weera W
    Comput Math Methods Med; 2022; 2022():3599827. PubMed ID: 36404912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Runge-Kutta neural network for identification of dynamical systems in high accuracy.
    Wang YJ; Lin CT
    IEEE Trans Neural Netw; 1998; 9(2):294-307. PubMed ID: 18252453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems.
    Simos TE; Aguiar JV
    Comput Chem; 2001 May; 25(3):275-81. PubMed ID: 11339410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical treatments for the optimal control of two types variable-order COVID-19 model.
    Sweilam N; Al-Mekhlafi S; Shatta S; Baleanu D
    Results Phys; 2022 Nov; 42():105964. PubMed ID: 36092971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagonally implicit symplectic Runge-Kutta methods with high algebraic and dispersion order.
    Cong YH; Jiang CX
    ScientificWorldJournal; 2014; 2014():147801. PubMed ID: 24977178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.