These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32879934)

  • 1. Deep-learning method for data association in particle tracking.
    Yao Y; Smal I; Grigoriev I; Akhmanova A; Meijering E
    Bioinformatics; 2020 Dec; 36(19):4935-4941. PubMed ID: 32879934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic improvement of deep learning-based cell segmentation in time-lapse microscopy by neural architecture search.
    Zhu Y; Meijering E
    Bioinformatics; 2021 Dec; 37(24):4844-4850. PubMed ID: 34329376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences.
    Kefer P; Iqbal F; Locatelli M; Lawrimore J; Zhang M; Bloom K; Bonin K; Vidi PA; Liu J
    Mol Biol Cell; 2021 Apr; 32(9):903-914. PubMed ID: 33502895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DLBI: deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy.
    Li Y; Xu F; Zhang F; Xu P; Zhang M; Fan M; Li L; Gao X; Han R
    Bioinformatics; 2018 Jul; 34(13):i284-i294. PubMed ID: 29950012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep probabilistic tracking of particles in fluorescence microscopy images.
    Spilger R; Lee JY; Chagin VO; Schermelleh L; Cardoso MC; Bartenschlager R; Rohr K
    Med Image Anal; 2021 Aug; 72():102128. PubMed ID: 34229189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy.
    Smal I; Meijering E
    Med Image Anal; 2015 Aug; 24(1):163-189. PubMed ID: 26176413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PlasGUN: gene prediction in plasmid metagenomic short reads using deep learning.
    Fang Z; Tan J; Wu S; Li M; Wang C; Liu Y; Zhu H
    Bioinformatics; 2020 May; 36(10):3239-3241. PubMed ID: 32091572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning for biomedical named entity recognition with neural networks.
    Giorgi JM; Bader GD
    Bioinformatics; 2018 Dec; 34(23):4087-4094. PubMed ID: 29868832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-type biomedical named entity recognition with deep multi-task learning.
    Wang X; Zhang Y; Ren X; Zhang Y; Zitnik M; Shang J; Langlotz C; Han J
    Bioinformatics; 2019 May; 35(10):1745-1752. PubMed ID: 30307536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STracking: a free and open-source Python library for particle tracking and analysis.
    Prigent S; Valades-Cruz CA; Leconte L; Salamero J; Kervrann C
    Bioinformatics; 2022 Jul; 38(14):3671-3673. PubMed ID: 35639941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the feasibility of deep learning applications using raw mass spectrometry data.
    Cadow J; Manica M; Mathis R; Guo T; Aebersold R; Rodríguez Martínez M
    Bioinformatics; 2021 Jul; 37(Suppl_1):i245-i253. PubMed ID: 34252933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SANPolyA: a deep learning method for identifying Poly(A) signals.
    Yu H; Dai Z
    Bioinformatics; 2020 Apr; 36(8):2393-2400. PubMed ID: 31904817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LapTrack: linear assignment particle tracking with tunable metrics.
    Fukai YT; Kawaguchi K
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.
    Zhu Q; Li X; Conesa A; Pereira C
    Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BeadNet: deep learning-based bead detection and counting in low-resolution microscopy images.
    Scherr T; Streule K; Bartschat A; Böhland M; Stegmaier J; Reischl M; Orian-Rousseau V; Mikut R
    Bioinformatics; 2020 Nov; 36(17):4668-4670. PubMed ID: 32589734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning transferable deep convolutional neural networks for the classification of bacterial virulence factors.
    Zheng D; Pang G; Liu B; Chen L; Yang J
    Bioinformatics; 2020 Jun; 36(12):3693-3702. PubMed ID: 32251507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.