BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32879943)

  • 1. Global Sensitivity Analysis for Patient-Specific Aortic Simulations: The Role of Geometry, Boundary Condition and Large Eddy Simulation Modeling Parameters.
    Xu H; Baroli D; Veneziani A
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32879943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
    Boccadifuoco A; Mariotti A; Capellini K; Celi S; Salvetti MV
    Cardiovasc Eng Technol; 2018 Dec; 9(4):688-706. PubMed ID: 30357714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Cardiac Motion on Aortic Valve Flow Used in Computational Simulations of the Thoracic Aorta.
    Wendell DC; Samyn MM; Cava JR; Krolikowski MM; LaDisa JF
    J Biomech Eng; 2016 Sep; 138(9):0910011-09100111. PubMed ID: 27367143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Uncertainty of Outlet Boundary Conditions in a Patient-Specific Case of Aortic Coarctation.
    Antonuccio MN; Mariotti A; Fanni BM; Capellini K; Capelli C; Sauvage E; Celi S
    Ann Biomed Eng; 2021 Dec; 49(12):3494-3507. PubMed ID: 34431017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large eddy simulations of blood dynamics in abdominal aortic aneurysms.
    Vergara C; Le Van D; Quadrio M; Formaggia L; Domanin M
    Med Eng Phys; 2017 Sep; 47():38-46. PubMed ID: 28709929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of morphological and hemodynamical indexes in abdominal aortic aneurysms as preliminary indicators of intraluminal thrombus deposition.
    Colciago CM; Deparis S; Domanin M; Riccobene C; Schenone E; Quarteroni A
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1035-1053. PubMed ID: 31820279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling.
    Chandra S; Raut SS; Jana A; Biederman RW; Doyle M; Muluk SC; Finol EA
    J Biomech Eng; 2013 Aug; 135(8):81001. PubMed ID: 23719760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Computational Methodologies for Accurate Prediction of Wall Shear Stress and Turbulence Parameters in a Patient-Specific Aorta.
    Manchester EL; Pirola S; Salmasi MY; O'Regan DP; Athanasiou T; Xu XY
    Front Bioeng Biotechnol; 2022; 10():836611. PubMed ID: 35402418
    [No Abstract]   [Full Text] [Related]  

  • 10. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms.
    Arzani A; Suh GY; Dalman RL; Shadden SC
    Am J Physiol Heart Circ Physiol; 2014 Dec; 307(12):H1786-95. PubMed ID: 25326533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations.
    Sankaran S; Marsden AL
    J Biomech Eng; 2011 Mar; 133(3):031001. PubMed ID: 21303177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parametric model for studying the aorta hemodynamics by means of the computational fluid dynamics.
    Cilla M; Casales M; Peña E; Martínez MA; Malvè M
    J Biomech; 2020 Apr; 103():109691. PubMed ID: 32147240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian approach to blood rheological uncertainties in aortic hemodynamics.
    Ranftl S; Müller TS; Windberger U; Brenn G; von der Linden W
    Int J Numer Method Biomed Eng; 2023 Apr; 39(4):e3576. PubMed ID: 35099851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation.
    Wake AK; Oshinski JN; Tannenbaum AR; Giddens DP
    J Biomech Eng; 2009 Feb; 131(2):021013. PubMed ID: 19102572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics.
    Tse KM; Chang R; Lee HP; Lim SP; Venkatesh SK; Ho P
    Eur J Cardiothorac Surg; 2013 Apr; 43(4):829-38. PubMed ID: 22766960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition.
    Chang GH; Schirmer CM; Modarres-Sadeghi Y
    J Biomech; 2017 Mar; 54():33-43. PubMed ID: 28238422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D FSI determination of mechanical stresses on aneurismal walls.
    Veshkina N; Zbicinski I; Stefańczyk L
    Biomed Mater Eng; 2014; 24(6):2519-26. PubMed ID: 25226953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study on the influence of aortic valve disease on hemodynamics in dilated aorta.
    Xu LJ; Yin LK; Liu YJ; Liang FY
    Math Biosci Eng; 2019 Oct; 17(1):606-626. PubMed ID: 31731367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of an Adaptive Polynomial Chaos Expansion on Computationally Expensive Three-Dimensional Cardiovascular Models for Uncertainty Quantification and Sensitivity Analysis.
    Quicken S; Donders WP; van Disseldorp EM; Gashi K; Mees BM; van de Vosse FN; Lopata RG; Delhaas T; Huberts W
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27636531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.