These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 32881183)
1. Insights on toxin genotyping, virulence, antibiogram profiling, biofilm formation and efficacy of disinfectants on biofilms of Clostridium perfringens isolated from poultry, animals and humans. Gharieb R; Saad M; Abdallah K; Khedr M; Farag E; Abd El-Fattah A J Appl Microbiol; 2021 Mar; 130(3):819-831. PubMed ID: 32881183 [TBL] [Abstract][Full Text] [Related]
2. Molecular genotyping, biofilm formation and antibiotic resistance of enterotoxigenic Clostridium perfringens isolated from meat supplied to school cafeterias in South Korea. Hu WS; Kim H; Koo OK Anaerobe; 2018 Aug; 52():115-121. PubMed ID: 29936108 [TBL] [Abstract][Full Text] [Related]
3. Characterization of toxin genes and quantitative analysis of netB in necrotic enteritis (NE)-producing and non-NE-producing Clostridium perfringens isolated from chickens. Yang WY; Chou CH; Wang C Anaerobe; 2018 Dec; 54():115-120. PubMed ID: 30170048 [TBL] [Abstract][Full Text] [Related]
4. Isolation, toxinotyping and antimicrobial susceptibility testing of Clostridium perfringens isolated from Pakistan poultry. Haider Z; Ali T; Ullah A; Basit A; Tahir H; Tariq H; Ilyas SZ; Hayat Z; Rehman SU Anaerobe; 2022 Feb; 73():102499. PubMed ID: 34890812 [TBL] [Abstract][Full Text] [Related]
5. Low Prevalence of netB and tpeL in Historical Clostridium perfringens Isolates from Broiler Farms in Alabama. Bailey MA; Macklin KS; Krehling JT Avian Dis; 2015 Mar; 59(1):46-51. PubMed ID: 26292533 [TBL] [Abstract][Full Text] [Related]
6. Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. Anju K; Karthik K; Divya V; Mala Priyadharshini ML; Sharma RK; Manoharan S Anaerobe; 2021 Feb; 67():102298. PubMed ID: 33220406 [TBL] [Abstract][Full Text] [Related]
7. Prevalence and characterization of Clostridium perfringens isolated from feces of captive cynomolgus monkeys (Macaca fascicularis). Koo BS; Hwang EH; Kim G; Park JY; Oh H; Lim KS; Kang P; Lee HY; Jeong KJ; Mo I; Villinger F; Hong JJ Anaerobe; 2020 Aug; 64():102236. PubMed ID: 32623046 [TBL] [Abstract][Full Text] [Related]
8. Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations. Chalmers G; Bruce HL; Hunter DB; Parreira VR; Kulkarni RR; Jiang YF; Prescott JF; Boerlin P J Clin Microbiol; 2008 Dec; 46(12):3957-64. PubMed ID: 18945840 [TBL] [Abstract][Full Text] [Related]
9. Prevalence, Genotypic and Phenotypic Characterization and Antibiotic Resistance Profile of Mohiuddin M; Iqbal Z; Siddique A; Liao S; Salamat MKF; Qi N; Din AM; Sun M Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33066416 [No Abstract] [Full Text] [Related]
10. Molecular characterization and antimicrobial resistance profile of Clostridium perfringens type A isolates from humans, animals, fish and their environment. Yadav JP; Das SC; Dhaka P; Vijay D; Kumar M; Mukhopadhyay AK; Chowdhury G; Chauhan P; Singh R; Dhama K; Malik SVS; Kumar A Anaerobe; 2017 Oct; 47():120-124. PubMed ID: 28526496 [TBL] [Abstract][Full Text] [Related]
11. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Charlebois A; Jacques M; Boulianne M; Archambault M Food Microbiol; 2017 Apr; 62():32-38. PubMed ID: 27889162 [TBL] [Abstract][Full Text] [Related]
12. Toxinotyping of necrotic enteritis-producing and commensal isolates of Clostridium perfringens from chickens fed organic diets. Brady J; Hernandez-Doria JD; Bennett C; Guenter W; House JD; Rodriguez-Lecompte JC Avian Pathol; 2010 Dec; 39(6):475-81. PubMed ID: 21154057 [TBL] [Abstract][Full Text] [Related]
13. The prevalence of plasmid-coded cpe enterotoxin, β Park M; Rafii F Anaerobe; 2019 Apr; 56():124-129. PubMed ID: 30802555 [TBL] [Abstract][Full Text] [Related]
14. Prevalence, toxin-typing, and antimicrobial susceptibility of Clostridium perfringens from retail meats in Seoul, Korea. Jang YS; Kim DH; Bae D; Kim SH; Kim H; Moon JS; Song KY; Chon JW; Seo KH Anaerobe; 2020 Aug; 64():102235. PubMed ID: 32619505 [TBL] [Abstract][Full Text] [Related]
15. Multiplex PCR assay for toxinotyping Clostridium perfringens isolates obtained from Finnish broiler chickens. Heikinheimo A; Korkeala H Lett Appl Microbiol; 2005; 40(6):407-11. PubMed ID: 15892734 [TBL] [Abstract][Full Text] [Related]
16. Antibiotic resistance, genome analysis and further safe traits of Clostridium perfringens ICVB082; a strain capable of producing an inhibitory compound directed only against a closely related pathogenic strain. Vieco-Saiz N; Belguesmia Y; Vachée A; Le Maréchal C; Salvat G; Drider D Anaerobe; 2020 Apr; 62():102177. PubMed ID: 32097777 [TBL] [Abstract][Full Text] [Related]
17. Virulence for chickens of Clostridium perfringens isolated from poultry and other sources. Cooper KK; Theoret JR; Stewart BA; Trinh HT; Glock RD; Songer JG Anaerobe; 2010 Jun; 16(3):289-92. PubMed ID: 20193771 [TBL] [Abstract][Full Text] [Related]
18. Genetic diversity of Clostridium perfringens isolated from healthy broiler chickens at a commercial farm. Chalmers G; Martin SW; Hunter DB; Prescott JF; Weber LJ; Boerlin P Vet Microbiol; 2008 Feb; 127(1-2):116-27. PubMed ID: 17888591 [TBL] [Abstract][Full Text] [Related]
19. Genotyping and antimicrobial susceptibility of Clostridium perfringens isolated from dromedary camels, pastures and herders. Fayez M; Elsohaby I; Al-Marri T; Zidan K; Aldoweriej A; El-Sergany E; Elmoslemany A Comp Immunol Microbiol Infect Dis; 2020 Jun; 70():101460. PubMed ID: 32145560 [TBL] [Abstract][Full Text] [Related]
20. Prevalence of Profeta F; Di Francesco CE; Di Provvido A; Scacchia M; Alessiani A; Di Giannatale E; Marruchella G; Orsini M; Toscani T; Marsilio F J Vet Diagn Invest; 2020 Mar; 32(2):252-258. PubMed ID: 31650911 [No Abstract] [Full Text] [Related] [Next] [New Search]