BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32881202)

  • 1. Self-Densification of Highly Mesoporous Wood Structure into a Strong and Transparent Film.
    Li K; Wang S; Chen H; Yang X; Berglund LA; Zhou Q
    Adv Mater; 2020 Oct; 32(42):e2003653. PubMed ID: 32881202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification.
    Chen F; Ritter M; Xu Y; Tu K; Koch SM; Yan W; Bian H; Ding Y; Sun J; Burgert I
    Small; 2024 May; ():e2311966. PubMed ID: 38770995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Densified Optically Transparent VO
    Liu S; Tso CY; Lee HH; Du YW; Yu KM; Feng SP; Huang B
    ACS Appl Mater Interfaces; 2021 May; 13(19):22495-22504. PubMed ID: 33969687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic, Transparent Films with Aligned Cellulose Nanofibers.
    Zhu M; Wang Y; Zhu S; Xu L; Jia C; Dai J; Song J; Yao Y; Wang Y; Li Y; Henderson D; Luo W; Li H; Minus ML; Li T; Hu L
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures.
    Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G
    ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Oxidative Enzyme Boosting Mechanical and Optical Performance of Densified Wood Films.
    Koskela S; Wang S; Li L; Zha L; Berglund LA; Zhou Q
    Small; 2023 Apr; 19(17):e2205056. PubMed ID: 36703510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delignified Wood-Polymer Interpenetrating Composites Exceeding the Rule of Mixtures.
    Frey M; Schneider L; Masania K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35305-35311. PubMed ID: 31454224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of cellulose molecules toward delignified oxidated hot-pressed wood with improved mechanical properties.
    Wang J; Han X; Wu W; Wang X; Ding L; Wang Y; Li S; Hu J; Yang W; Zhang C; Jiang S
    Int J Biol Macromol; 2023 Mar; 231():123343. PubMed ID: 36682656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically strong, hydrostable, and biodegradable all-biobased transparent wood films with UV-blocking performance.
    Zhou T; Zhou J; Feng Q; Yang Q; Jin Y; Li D; Xu Z; Chen C
    Int J Biol Macromol; 2024 Jan; 255():128188. PubMed ID: 37977473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wood xerogel for fabrication of high-performance transparent wood.
    Wang S; Li L; Zha L; Koskela S; Berglund LA; Zhou Q
    Nat Commun; 2023 May; 14(1):2827. PubMed ID: 37198187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bamboo cellulose fibers prepared by different drying methods: Structure-property relationships.
    Zhang S; Lin Q; Wang X; Yu Y; Yu W; Huang Y
    Carbohydr Polym; 2022 Nov; 296():119926. PubMed ID: 36087979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wood-Based Flexible Electronics.
    Fu Q; Chen Y; Sorieul M
    ACS Nano; 2020 Mar; 14(3):3528-3538. PubMed ID: 32109046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.
    Saito T; Nishiyama Y; Putaux JL; Vignon M; Isogai A
    Biomacromolecules; 2006 Jun; 7(6):1687-91. PubMed ID: 16768384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance.
    Li Y; Fu Q; Yu S; Yan M; Berglund L
    Biomacromolecules; 2016 Apr; 17(4):1358-64. PubMed ID: 26942562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-Bonding-Aided Fabrication of Wood Derived Cellulose Scaffold/Aramid Nanofiber into High-Performance Bulk Material.
    Han X; Wu W; Wang J; Tian Z; Jiang S
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro- and nano-fibrils of manau rattan and solvent-exchange-induced high-haze transparent holocellulose nanofibril film.
    Han X; Wang J; Wang J; Ding L; Zhang K; Han J; Jiang S
    Carbohydr Polym; 2022 Dec; 298():120075. PubMed ID: 36241270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of High Strength Plywood from Partially Delignified Densified Wood.
    Jakob M; Stemmer G; Czabany I; Müller U; Gindl-Altmutter W
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32796560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures.
    Fu Q; Ansari F; Zhou Q; Berglund LA
    ACS Nano; 2018 Mar; 12(3):2222-2230. PubMed ID: 29412639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.