These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32882179)

  • 21. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress.
    LeBlanc C; Zhang F; Mendez J; Lozano Y; Chatpar K; Irish VF; Jacob Y
    Plant J; 2018 Jan; 93(2):377-386. PubMed ID: 29161464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity.
    O'Reilly D; Kartje ZJ; Ageely EA; Malek-Adamian E; Habibian M; Schofield A; Barkau CL; Rohilla KJ; DeRossett LB; Weigle AT; Damha MJ; Gagnon KT
    Nucleic Acids Res; 2019 Jan; 47(2):546-558. PubMed ID: 30517736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allosteric inhibition of CRISPR-Cas9 by bacteriophage-derived peptides.
    Cui YR; Wang SJ; Chen J; Li J; Chen W; Wang S; Meng B; Zhu W; Zhang Z; Yang B; Jiang B; Yang G; Ma P; Liu J
    Genome Biol; 2020 Feb; 21(1):51. PubMed ID: 32102684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A thermostable Cas9 with increased lifetime in human plasma.
    Harrington LB; Paez-Espino D; Staahl BT; Chen JS; Ma E; Kyrpides NC; Doudna JA
    Nat Commun; 2017 Nov; 8(1):1424. PubMed ID: 29127284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and functional insights into the
    Zuo Z; Zolekar A; Babu K; Lin VJ; Hayatshahi HS; Rajan R; Wang YC; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31361218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
    Basgall EM; Goetting SC; Goeckel ME; Giersch RM; Roggenkamp E; Schrock MN; Halloran M; Finnigan GC
    Microbiology (Reading); 2018 Apr; 164(4):464-474. PubMed ID: 29488867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity.
    Aschenbrenner S; Kallenberger SM; Hoffmann MD; Huck A; Eils R; Niopek D
    Sci Adv; 2020 Feb; 6(6):eaay0187. PubMed ID: 32076642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration.
    Jakhanwal S; Cress BF; Maguin P; Lobba MJ; Marraffini LA; Doudna JA
    Nucleic Acids Res; 2021 Apr; 49(6):3546-3556. PubMed ID: 33693715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing using Cas9 nickases.
    Trevino AE; Zhang F
    Methods Enzymol; 2014; 546():161-74. PubMed ID: 25398340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical and optical control of CRISPR-associated nucleases.
    Modell AE; Siriwardena SU; Shoba VM; Li X; Choudhary A
    Curr Opin Chem Biol; 2021 Feb; 60():113-121. PubMed ID: 33253976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9 Editing of the C. elegans rbm-3.2 Gene using the dpy-10 Co-CRISPR Screening Marker and Assembled Ribonucleoprotein Complexes.
    Smith A; Bergwell M; Smith E; Mathew D; Iyer J
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33369608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleic acid cleavage with a hyperthermophilic Cas9 from an uncultured Ignavibacterium.
    Schmidt ST; Yu FB; Blainey PC; May AP; Quake SR
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23100-23105. PubMed ID: 31659048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9.
    Hynes AP; Rousseau GM; Lemay ML; Horvath P; Romero DA; Fremaux C; Moineau S
    Nat Microbiol; 2017 Oct; 2(10):1374-1380. PubMed ID: 28785032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Belato HB; East KW; Lisi GP
    Biomol NMR Assign; 2019 Oct; 13(2):367-370. PubMed ID: 31377985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.