These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32882179)

  • 41. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.
    Zhou XX; Zou X; Chung HK; Gao Y; Liu Y; Qi LS; Lin MZ
    ACS Chem Biol; 2018 Feb; 13(2):443-448. PubMed ID: 28938067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 43. AcrIIA28 is a metalloprotein that specifically inhibits targeted-DNA loading to SpyCas9 by binding to the REC3 domain.
    Kim GE; Park HH
    Nucleic Acids Res; 2024 Jun; 52(11):6459-6471. PubMed ID: 38726868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 45. Highly Multiplexed Analysis of CRISPR Genome Editing Outcomes in Mammalian Cells.
    Ishiguro S; Yachie N
    Methods Mol Biol; 2021; 2312():193-223. PubMed ID: 34228292
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the Dynamics of
    Zhdanova PV; Chernonosov AA; Prokhorova DV; Stepanov GA; Kanazhevskaya LY; Koval VV
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice].
    Xin GW; Hu XX; Wang KJ; Wang XC
    Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Cas9 with PAM recognition for adenine dinucleotides.
    Chatterjee P; Lee J; Nip L; Koseki SRT; Tysinger E; Sontheimer EJ; Jacobson JM; Jakimo N
    Nat Commun; 2020 May; 11(1):2474. PubMed ID: 32424114
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulation of Cas9 level for efficient CRISPR-Cas9-mediated chromosomal and plasmid gene deletion in Bacillus thuringiensis.
    Soonsanga S; Luxananil P; Promdonkoy B
    Biotechnol Lett; 2020 Apr; 42(4):625-632. PubMed ID: 31960185
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power.
    Zhang D; Zhang B
    Trends Genet; 2020 Aug; 36(8):546-548. PubMed ID: 32456805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins.
    Hoffmann MD; Aschenbrenner S; Grosse S; Rapti K; Domenger C; Fakhiri J; Mastel M; Börner K; Eils R; Grimm D; Niopek D
    Nucleic Acids Res; 2019 Jul; 47(13):e75. PubMed ID: 30982889
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In-depth assessment of the PAM compatibility and editing activities of Cas9 variants.
    Zhang W; Yin J; Zhang-Ding Z; Xin C; Liu M; Wang Y; Ai C; Hu J
    Nucleic Acids Res; 2021 Sep; 49(15):8785-8795. PubMed ID: 34133740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comprehensive UHPLC- and CE-based methods for engineered Cas9 characterization.
    Camperi J; Console G; Zheng L; Stephens N; Montti M; Roper B; Zheng M; Moshref M; Dagdas Y; Holder P; Stella C
    Talanta; 2023 Jan; 252():123780. PubMed ID: 35988299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NmeCas9 is an intrinsically high-fidelity genome-editing platform.
    Amrani N; Gao XD; Liu P; Edraki A; Mir A; Ibraheim R; Gupta A; Sasaki KE; Wu T; Donohoue PD; Settle AH; Lied AM; McGovern K; Fuller CK; Cameron P; Fazzio TG; Zhu LJ; Wolfe SA; Sontheimer EJ
    Genome Biol; 2018 Dec; 19(1):214. PubMed ID: 30518407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DNA rehybridization drives product release from Cas9 ribonucleoprotein to enable multiple-turnover cleavage.
    Pan J; Mabuchi M; Robb GB
    Nucleic Acids Res; 2023 May; 51(8):3903-3917. PubMed ID: 37014013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome.
    Forsberg KJ; Bhatt IV; Schmidtke DT; Javanmardi K; Dillard KE; Stoddard BL; Finkelstein IJ; Kaiser BK; Malik HS
    Elife; 2019 Sep; 8():. PubMed ID: 31502535
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification of Cas9-RNA complexes by ultrafiltration.
    Manzano I; Taylor N; Csordas M; Vezeau GE; Salis HM; Zydney AL
    Biotechnol Prog; 2021 Mar; 37(2):e3104. PubMed ID: 33274853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.