These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32882420)

  • 1. Do not neglect the role of circadian rhythm in muscle atrophy.
    Zhang H; Liang J; Chen N
    Ageing Res Rev; 2020 Nov; 63():101155. PubMed ID: 32882420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atypical expression of circadian clock genes in denervated mouse skeletal muscle.
    Nakao R; Yamamoto S; Horikawa K; Yasumoto Y; Nikawa T; Mukai C; Oishi K
    Chronobiol Int; 2015 May; 32(4):486-96. PubMed ID: 25798696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle functions around the clock.
    Mayeuf-Louchart A; Staels B; Duez H
    Diabetes Obes Metab; 2015 Sep; 17 Suppl 1():39-46. PubMed ID: 26332967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion.
    Rossetti ML; Esser KA; Lee C; Tomko RJ; Eroshkin AM; Gordon BS
    Am J Physiol Endocrinol Metab; 2019 Oct; 317(4):E631-E645. PubMed ID: 31361545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms, the molecular clock, and skeletal muscle.
    Harfmann BD; Schroder EA; Esser KA
    J Biol Rhythms; 2015 Apr; 30(2):84-94. PubMed ID: 25512305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
    Theilen NT; Kunkel GH; Tyagi SC
    J Cell Physiol; 2017 Sep; 232(9):2348-2358. PubMed ID: 27966783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism.
    Manickam R; Oh HYP; Tan CK; Paramalingam E; Wahli W
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30115857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Working around the clock: circadian rhythms and skeletal muscle.
    Zhang X; Dube TJ; Esser KA
    J Appl Physiol (1985); 2009 Nov; 107(5):1647-54. PubMed ID: 19696362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of the Molecular Clock in Promoting Skeletal Muscle Growth and Protecting against Sarcopenia.
    Vitale JA; Bonato M; La Torre A; Banfi G
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31484440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food deprivation during active phase induces skeletal muscle atrophy via IGF-1 reduction in mice.
    Abe T; Kazama R; Okauchi H; Oishi K
    Arch Biochem Biophys; 2019 Nov; 677():108160. PubMed ID: 31639326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammation o'clock: interactions of circadian rhythms with inflammation-induced skeletal muscle atrophy.
    Morena da Silva F; Esser KA; Murach KA; Greene NP
    J Physiol; 2023 Aug; ():. PubMed ID: 37563881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the clock gene Rev-erbα in metabolism and in the endocrine pancreas.
    Vieira E; Merino B; Quesada I
    Diabetes Obes Metab; 2015 Sep; 17 Suppl 1():106-14. PubMed ID: 26332975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in research on cell models for skeletal muscle atrophy.
    Li L; Huang C; Pang J; Huang Y; Chen X; Chen G
    Biomed Pharmacother; 2023 Nov; 167():115517. PubMed ID: 37738794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.
    Bohnert KR; McMillan JD; Kumar A
    J Cell Physiol; 2018 Jan; 233(1):67-78. PubMed ID: 28177127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of high fat diet on daily rhythm of the core clock genes and muscle functional genes in the skeletal muscle of Chinese soft-shelled turtle (Trionyx sinensis).
    Liu L; Jiang G; Peng Z; Li Y; Li J; Zou L; He Z; Wang X; Chu W
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Nov; 213():17-27. PubMed ID: 28729066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heme oxygenase-1: A potential therapeutic target for improving skeletal muscle atrophy.
    Xiao Q; Sun CC; Tang CF
    Exp Gerontol; 2023 Dec; 184():112335. PubMed ID: 37984695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle: increasing the size of the locomotor cell.
    Karagounis LG; Hawley JA
    Int J Biochem Cell Biol; 2010 Sep; 42(9):1376-9. PubMed ID: 20541033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action.
    Dalbram E; Basse AL; Zierath JR; Treebak JT
    J Appl Physiol (1985); 2019 Apr; 126(4):993-1005. PubMed ID: 30730814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.
    van Moorsel D; Hansen J; Havekes B; Scheer FAJL; Jörgensen JA; Hoeks J; Schrauwen-Hinderling VB; Duez H; Lefebvre P; Schaper NC; Hesselink MKC; Staels B; Schrauwen P
    Mol Metab; 2016 Aug; 5(8):635-645. PubMed ID: 27656401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.