These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32882499)
1. Effect of operating conditions on the chemical composition, morphology, and nano-structure of particulate emissions in a light hydrocarbon premixed charge compression ignition (PCCI) engine. Chen H; Wang X; Pan Z Sci Total Environ; 2021 Jan; 750():141716. PubMed ID: 32882499 [TBL] [Abstract][Full Text] [Related]
2. Particulate characteristics of low-temperature combustion (PCCI and RCCI) strategies in single cylinder research engine for developing sustainable and cleaner transportation solution. Agarwal AK; Singh AP; Kumar V Environ Pollut; 2021 Sep; 284():117375. PubMed ID: 34058502 [TBL] [Abstract][Full Text] [Related]
3. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine. Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720 [TBL] [Abstract][Full Text] [Related]
4. A comparative study for the effect of different premixed charge ratios with conventional diesel engines on the performance, emissions, and vibrations of the engine block. Elbanna AM; Xiaobei C; Can Y; Elkelawy M; Bastawissi HA Environ Sci Pollut Res Int; 2023 Oct; 30(49):106774-106789. PubMed ID: 36114970 [TBL] [Abstract][Full Text] [Related]
5. Soot particle morphology and nanostructure with oxygenated fuels: A comparative study into cold-start and hot-start operation. Verma P; Jafari M; Zare A; Pickering E; Guo Y; Osuagwu CG; Stevanovic S; Brown R; Ristovski Z Environ Pollut; 2021 Apr; 275():116592. PubMed ID: 33582631 [TBL] [Abstract][Full Text] [Related]
6. Effect of lubricating base oil on the oxidation behavior of diesel exhaust soot. Wang Y; Yang H; Liang X; Song H; Tao Z Sci Total Environ; 2023 Feb; 858(Pt 3):160009. PubMed ID: 36368398 [TBL] [Abstract][Full Text] [Related]
7. Diesel engine exhaust emission: oxidative behavior and microstructure of black smoke soot particulate. Müller JO; Su DS; Jentoft RE; Wild U; Schlögl R Environ Sci Technol; 2006 Feb; 40(4):1231-6. PubMed ID: 16572780 [TBL] [Abstract][Full Text] [Related]
8. Thermally induced variations in the nanostructure and reactivity of soot particles emitted from a diesel engine. Liu Y; Fan C; Wang X; Liu F; Chen H Chemosphere; 2022 Jan; 286(Pt 2):131712. PubMed ID: 34333188 [TBL] [Abstract][Full Text] [Related]
9. Impact of carbon chain length of alcohols on the physicochemical properties and reactivity of exhaust soot. Pan M; Wang Y; Wei J; Huang H; Zhou X Sci Total Environ; 2021 Dec; 799():149434. PubMed ID: 34371412 [TBL] [Abstract][Full Text] [Related]
10. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine. Maurya RK; Saxena MR; Rai P; Bhardwaj A Environ Sci Pollut Res Int; 2018 May; 25(15):14674-14689. PubMed ID: 29532381 [TBL] [Abstract][Full Text] [Related]
11. Impact of lower and higher alcohol additions to diesel on the combustion and emissions of a direct-injection diesel engine. Li X; Guan C; Yang K; Cheung CS; Huang Z Environ Sci Pollut Res Int; 2019 Jul; 26(20):21001-21012. PubMed ID: 31115816 [TBL] [Abstract][Full Text] [Related]
12. Influence of diesel engine combustion parameters on primary soot particle diameter. Mathis U; Mohr M; Kaegi R; Bertola A; Boulouchos K Environ Sci Technol; 2005 Mar; 39(6):1887-92. PubMed ID: 15819252 [TBL] [Abstract][Full Text] [Related]
13. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine. Robinson MA; Olson MR; Liu ZG; Schauer JJ J Air Waste Manag Assoc; 2015 Jun; 65(6):759-66. PubMed ID: 25976489 [TBL] [Abstract][Full Text] [Related]
14. Impact of fuel aromatic content on soot particle physicochemical properties of marine auxiliary diesel engine. Zhao B; Liang X; Li T; Lv X; Zhang S Environ Sci Pollut Res Int; 2022 Dec; 29(56):84936-84945. PubMed ID: 35789458 [TBL] [Abstract][Full Text] [Related]
15. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends. Cheung CS; Zhu R; Huang Z Sci Total Environ; 2011 Jan; 409(3):523-9. PubMed ID: 21081245 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends. Zhang ZH; Balasubramanian R J Hazard Mater; 2014 Jan; 264():395-402. PubMed ID: 24316811 [TBL] [Abstract][Full Text] [Related]
17. Effects of biodiesels on the physicochemical properties and oxidative reactivity of diesel particulates: A review. Wei J; Wang Y Sci Total Environ; 2021 Sep; 788():147753. PubMed ID: 34020091 [TBL] [Abstract][Full Text] [Related]
18. Impact of High-Voltage Discharge After-Treatment Technology on Diesel Engine Particulate Matter Composition and Gaseous Emissions. Wongchang T; Sittichompoo S; Theinnoi K; Sawatmongkhon B; Jugjai S ACS Omega; 2021 Aug; 6(32):21181-21192. PubMed ID: 34423226 [TBL] [Abstract][Full Text] [Related]
19. Effect of metallic lubricant additives on morphology, nanostructure, graphitization degree and oxidation reactivity of diesel particles. Wang Y; Yang H; Liang X; Song H; Tao Z Chemosphere; 2022 Nov; 306():135588. PubMed ID: 35803373 [TBL] [Abstract][Full Text] [Related]
20. Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Feng X; Ge Y; Ma C; Tan J; Yu L; Li J; Wang X Sci Total Environ; 2014 Feb; 472():56-62. PubMed ID: 24291555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]