These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32882500)

  • 1. A novel electrochemical oxidation-methanogenesis system for simultaneously degrading antibiotics and reducing CO
    Cheng S; Mao Z; Sun Y; Yang J; Yu Z; Gu R
    Sci Total Environ; 2021 Jan; 750():141732. PubMed ID: 32882500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane.
    Baek G; Kim J; Lee S; Lee C
    Bioresour Technol; 2017 Oct; 241():1201-1207. PubMed ID: 28688737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual effects of CO
    Gao T; Zhang H; Xu X; Teng J
    Sci Total Environ; 2022 Apr; 818():151732. PubMed ID: 34826488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.
    Luo X; Zhang F; Liu J; Zhang X; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(15):8911-8. PubMed ID: 25010133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced anodic oxidation and energy saving for dye removal by integrating O
    Mo Y; Du M; Yuan T; Liu M; Wang H; He B; Li J; Zhao X
    Chemosphere; 2020 Aug; 252():126460. PubMed ID: 32197176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct biological conversion of electrical current into methane by electromethanogenesis.
    Cheng S; Xing D; Call DF; Logan BE
    Environ Sci Technol; 2009 May; 43(10):3953-8. PubMed ID: 19544913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode.
    Zhen G; Kobayashi T; Lu X; Xu K
    Bioresour Technol; 2015 Jun; 186():141-148. PubMed ID: 25812818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanogenic Biocathode Microbial Community Development and the Role of Bacteria.
    Dykstra CM; Pavlostathis SG
    Environ Sci Technol; 2017 May; 51(9):5306-5316. PubMed ID: 28368570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of Methanogen Communities to the Elevation of Cathode Potentials in Bioelectrochemical Reactors Amended with Magnetite.
    Gao K; Wang X; Huang J; Xia X; Lu Y
    Appl Environ Microbiol; 2021 Oct; 87(21):e0148821. PubMed ID: 34432490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero-Valent Iron Enhances Biocathodic Carbon Dioxide Reduction to Methane.
    Dykstra CM; Pavlostathis SG
    Environ Sci Technol; 2017 Nov; 51(21):12956-12964. PubMed ID: 28994592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrochemical methanation by utilization of steel mill off-gas in a two-chamber microbial electrolysis cell.
    Spiess S; Sasiain Conde A; Kucera J; Novak D; Thallner S; Kieberger N; Guebitz GM; Haberbauer M
    Front Bioeng Biotechnol; 2022; 10():972653. PubMed ID: 36159676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen function at a metatranscriptional level.
    Ragab A; Shaw DR; Katuri KP; Saikaly PE
    Sci Rep; 2020 Nov; 10(1):19824. PubMed ID: 33188217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis.
    Qi X; Jia X; Wang Y; Xu P; Li M; Xi B; Zhao Y; Zhu Y; Meng F; Ye M
    Bioresour Technol; 2022 Aug; 358():127385. PubMed ID: 35636677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of a newly developed electromethanogenesis for the highest record of methane production.
    Zhou H; Xing D; Xu M; Su Y; Ma J; Angelidaki I; Zhang Y
    J Hazard Mater; 2021 Apr; 407():124363. PubMed ID: 33199142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system.
    Van Eerten-Jansen MC; Veldhoen AB; Plugge CM; Stams AJ; Buisman CJ; Ter Heijne A
    Archaea; 2013; 2013():481784. PubMed ID: 24187516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide.
    Mayer F; Enzmann F; Lopez AM; Holtmann D
    Bioresour Technol; 2019 Oct; 289():121706. PubMed ID: 31279320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.