These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32882679)

  • 21. Real-time strain mapping via biaxial stretching in heart valve tissues.
    Huang HY; Huang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6653-6. PubMed ID: 23367455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical Properties of Fiber Bundle and Membrane Mesostructures of the Porcine Aortic Valve.
    Rock CA; Doehring TC
    J Heart Valve Dis; 2016 Jan; 25(1):82-89. PubMed ID: 27989090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aortic valve mechanics--Part I: material properties of natural porcine aortic valves.
    Missirlis YF; Chong M
    J Bioeng; 1978 Jun; 2(3-4):287-300. PubMed ID: 711721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biaxial mechanical behavior of excised porcine mitral valve leaflets.
    May-Newman K; Yin FC
    Am J Physiol; 1995 Oct; 269(4 Pt 2):H1319-27. PubMed ID: 7485564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Method to Quantify Tensile Biaxial Properties of Mouse Aortic Valve Leaflets.
    Chaparro D; Dargam V; Alvarez P; Yeung J; Saytashev I; Bustillo J; Loganathan A; Ramella-Roman J; Agarwal A; Hutcheson JD
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32291440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Experimental study on mechanical properties of the ventral and the dorsal tissues of porcine descending aorta].
    Li X; Chen L; Gao Z; Liu J; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):596-603. PubMed ID: 31441260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer.
    Nguyen N; Nath N; Deseri L; Tzeng E; Velankar SS; Pocivavsek L
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2375-2395. PubMed ID: 32535739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Planar biaxial testing of heart valve cusp replacement biomaterials: Experiments, theory and material constants.
    Labrosse MR; Jafar R; Ngu J; Boodhwani M
    Acta Biomater; 2016 Nov; 45():303-320. PubMed ID: 27570204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biaxial Mechanical Characterizations of Atrioventricular Heart Valves.
    Ross C; Laurence D; Wu Y; Lee CH
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31033941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the biaxial mechanical properties of the layers of the aortic valve leaflet.
    Stella JA; Sacks MS
    J Biomech Eng; 2007 Oct; 129(5):757-66. PubMed ID: 17887902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of affine fiber kinematics in porcine tricuspid valve leaflets using polarized spatial frequency domain imaging and planar biaxial testing.
    Ross CJ; Mullins BT; Hillshafer CE; Mir A; Burkhart HM; Lee CH
    J Biomech; 2021 Jun; 123():110475. PubMed ID: 34004393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmural variation in elastin fiber orientation distribution in the arterial wall.
    Yu X; Wang Y; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():745-753. PubMed ID: 28838859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Non-Invasive Material Characterization Framework for Bioprosthetic Heart Valves.
    Abbasi M; Barakat MS; Dvir D; Azadani AN
    Ann Biomed Eng; 2019 Jan; 47(1):97-112. PubMed ID: 30229500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pulmonary valve. Is it mechanically suitable for use as an aortic valve replacement?
    David H; Boughner DR; Vesely I; Gerosa G
    ASAIO J; 1994; 40(2):206-12. PubMed ID: 8003760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geometrical stress-reducing factors in the anisotropic porcine heart valves.
    Luo XY; Li WG; Li J
    J Biomech Eng; 2003 Oct; 125(5):735-44. PubMed ID: 14618934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biaxial strain analysis of the porcine aortic valve.
    Lo D; Vesely I
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S374-8. PubMed ID: 7646191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical characterization of aortic valve tissue in humans and common animal models.
    Martin C; Sun W
    J Biomed Mater Res A; 2012 Jun; 100(6):1591-9. PubMed ID: 22447518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of Material Constants for a Phenomenological Constitutive Model of Porcine Tricuspid Valve Leaflets for Simulation Applications.
    Khoiy KA; Pant AD; Amini R
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 29801174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.