BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32882926)

  • 1. Simulation of Autonomous Underwater Vehicles (AUVs) Swarm Diffusion.
    Petritoli E; Cagnetti M; Leccese F
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Asynchronous Federated Learning for AUV Swarm.
    Meng Z; Li Z; Hou X; Du J; Chen J; Wei W
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.
    Khan JU; Cho HS
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27706042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Navigation for Recovering an AUV by Another AUV in Shallow Water.
    Liu S; Xu H; Lin Y; Gao L
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks.
    Li N; Cürüklü B; Bastos J; Sucasas V; Fernandez JAS; Rodriguez J
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Real-Time Path Planning Algorithm for AUV in Unknown Underwater Environment Based on Combining PSO and Waypoint Guidance.
    Yan Z; Li J; Wu Y; Zhang G
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Formation Control for Multiple Underwater Vehicles.
    Bechlioulis CP; Giagkas F; Karras GC; Kyriakopoulos KJ
    Front Robot AI; 2019; 6():90. PubMed ID: 33501105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust input design for nonlinear dynamic modeling of AUV.
    Nouri NM; Valadi M
    ISA Trans; 2017 Sep; 70():288-297. PubMed ID: 28583348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I-AUV Docking and Panel Intervention at Sea.
    Palomeras N; Peñalver A; Massot-Campos M; Negre PL; Fernández JJ; Ridao P; Sanz PJ; Oliver-Codina G
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilevel Optimization-Based Time-Optimal Path Planning for AUVs.
    Yao X; Wang F; Wang J; Wang X
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.
    Cao X; Zhu D; Yang SX
    IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2364-2374. PubMed ID: 26485725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous Underwater Vehicles: Identifying Critical Issues and Future Perspectives in Image Acquisition.
    Monterroso Muñoz A; Moron-Fernández MJ; Cascado-Caballero D; Diaz-Del-Rio F; Real P
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Improved DSA-Based Approach for Multi-AUV Cooperative Search.
    Ni J; Yang L; Shi P; Luo C
    Comput Intell Neurosci; 2018; 2018():2186574. PubMed ID: 30627140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater Robotics Competitions: The European Robotics League Emergency Robots Experience With FeelHippo AUV.
    Franchi M; Fanelli F; Bianchi M; Ridolfi A; Allotta B
    Front Robot AI; 2020; 7():3. PubMed ID: 33501172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology.
    Fish FE
    Bioinspir Biomim; 2020 Feb; 15(2):025001. PubMed ID: 31751980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering Cloud-Like Model-Based Targets Underwater Tracking for AUVs.
    Sheng M; Tang S; Qin H; Wan L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Cost Electromagnetic Docking Guidance System for Micro Autonomous Underwater Vehicles.
    Peng S; Liu J; Wu J; Li C; Liu B; Cai W; Yu H
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy System Dynamics Risk Analysis (FuSDRA) of Autonomous Underwater Vehicle Operations in the Antarctic.
    Loh TY; Brito MP; Bose N; Xu J; Tenekedjiev K
    Risk Anal; 2020 Apr; 40(4):818-841. PubMed ID: 31799748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals.
    Duecker DA; Geist AR; Hengeler M; Kreuzer E; Pick MA; Rausch V; Solowjow E
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28445419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable laser-based underwater wireless optical communication solution between autonomous underwater vehicle fleets.
    Weng Y; Sekimori Y; Chun S; Alkhazragi O; Matsuda T; Trichili A; Ng TK; Ooi BS; Maki T
    Appl Opt; 2023 Nov; 62(31):8261-8271. PubMed ID: 38037928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.