These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32883082)

  • 1. Michael Addition with an Olefinic Pyridine: Organometallic Nucleophiles and Carbon Electrophiles.
    Stentzel MR; Klumpp DA
    J Org Chem; 2020 Oct; 85(19):12740-12746. PubMed ID: 32883082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated computational screening of the thiol reactivity of substituted alkenes.
    Smith JM; Rowley CN
    J Comput Aided Mol Des; 2015 Aug; 29(8):725-35. PubMed ID: 26159564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition.
    Liu RY; Buchwald SL
    Acc Chem Res; 2020 Jun; 53(6):1229-1243. PubMed ID: 32401530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recoverable Phospha-Michael Additions Catalyzed by a 4-
    Tessema E; Elakkat V; Chiu CF; Zheng JH; Chan KL; Shen CR; Zhang P; Lu N
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33671544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Access to Versatile Electrophiles via Catalytic Oxidative Cyanation of Alkenes.
    Gao DW; Vinogradova EV; Nimmagadda SK; Medina JM; Xiao Y; Suciu RM; Cravatt BF; Engle KM
    J Am Chem Soc; 2018 Jul; 140(26):8069-8073. PubMed ID: 29894184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors.
    Schmid TE; Drissi-Amraoui S; Crévisy C; Baslé O; Mauduit M
    Beilstein J Org Chem; 2015; 11():2418-34. PubMed ID: 26734090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation.
    LoPachin RM; Gavin T
    Free Radic Res; 2016; 50(2):195-205. PubMed ID: 26559119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-catalyzed enantioselective conjugate addition of organometallic reagents to challenging Michael acceptors.
    Pichon D; Morvan J; Crévisy C; Mauduit M
    Beilstein J Org Chem; 2020; 16():212-232. PubMed ID: 32180841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difluorocarbene as a Building Block for Consecutive Bond-Forming Reactions.
    Dilman AD; Levin VV
    Acc Chem Res; 2018 May; 51(5):1272-1280. PubMed ID: 29664601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of highly enantioenriched all-carbon quaternary centers: conjugate additions of chiral organolithium nucleophiles to alpha,alpha-dinitrile beta,beta-disubstituted olefins.
    Jang DO; Kim DD; Pyun DK; Beak P
    Org Lett; 2003 Oct; 5(22):4155-7. PubMed ID: 14572273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of Oxygen α-Nucleophilic Addition to α,β-Unsaturated Amides Catalyzed by Redox-Neutral Organic Photoreductant.
    Luan ZH; Qu JP; Kang YB
    J Am Chem Soc; 2020 Dec; 142(50):20942-20947. PubMed ID: 33263989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exocyclic Olefinic Maleimides: Synthesis and Application for Stable and Thiol-Selective Bioconjugation.
    Kalia D; Malekar PV; Parthasarathy M
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1432-5. PubMed ID: 26662576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.
    Negishi E; Huang Z; Wang G; Mohan S; Wang C; Hattori H
    Acc Chem Res; 2008 Nov; 41(11):1474-85. PubMed ID: 18783256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic, Regioselective Hydrocarbofunctionalization of Unactivated Alkenes with Diverse C-H Nucleophiles.
    Yang KS; Gurak JA; Liu Z; Engle KM
    J Am Chem Soc; 2016 Nov; 138(44):14705-14712. PubMed ID: 27709911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization.
    Zhao C; Crimmin MR; Toste FD; Bergman RG
    Acc Chem Res; 2014 Feb; 47(2):517-29. PubMed ID: 24359109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pi-nucleophilicity in carbon-carbon bond-forming reactions.
    Mayr H; Kempf B; Ofial AR
    Acc Chem Res; 2003 Jan; 36(1):66-77. PubMed ID: 12534306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric Multicomponent Reactions Based on Trapping of Active Intermediates.
    Zhang D; Hu W
    Chem Rec; 2017 Aug; 17(8):739-753. PubMed ID: 28052561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching Electrophile Intermediates to Nucleophiles: Michael and Oxa-Diels-Alder Reactions to Afford Polyoxy-Functionalized Piperidine Derivatives with Tetrasubstituted Carbon.
    Maram L; Tanaka F
    Org Lett; 2020 Apr; 22(7):2751-2755. PubMed ID: 32193936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient epoxidation of alkenes with aqueous hydrogen peroxide catalyzed by methyltrioxorhenium and 3-cyanopyridine.
    Adolfsson H; Copéret C; Chiang JP; Yudin AK
    J Org Chem; 2000 Dec; 65(25):8651-8. PubMed ID: 11112586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins.
    Wang Z; Yin H; Fu GC
    Nature; 2018 Nov; 563(7731):379-383. PubMed ID: 30337711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.