BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32883271)

  • 1. Identification of most influential co-occurring gene suites for gastrointestinal cancer using biomedical literature mining and graph-based influence maximization.
    Wang CCN; Jin J; Chang JG; Hayakawa M; Kitazawa A; Tsai JJP; Sheu PC
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):208. PubMed ID: 32883271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GIDB: a knowledge database for the automated curation and multidimensional analysis of molecular signatures in gastrointestinal cancer.
    Wang Y; Wang Y; Wang S; Tong Y; Jin L; Zong H; Zheng R; Yang J; Zhang Z; Ouyang E; Zhou M; Zhang X
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31089686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph-based biomedical text summarization: An itemset mining and sentence clustering approach.
    Nasr Azadani M; Ghadiri N; Davoodijam E
    J Biomed Inform; 2018 Aug; 84():42-58. PubMed ID: 29906584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SemaTyP: a knowledge graph based literature mining method for drug discovery.
    Sang S; Yang Z; Wang L; Liu X; Lin H; Wang J
    BMC Bioinformatics; 2018 May; 19(1):193. PubMed ID: 29843590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF.
    Tang B; Wang X; Yan J; Chen Q
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):74. PubMed ID: 30943972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.
    Liang Zhao ; Hoi SC; Li Z; Wong L; Nguyen H; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):7-16. PubMed ID: 26355502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research.
    Bravo À; Piñero J; Queralt-Rosinach N; Rautschka M; Furlong LI
    BMC Bioinformatics; 2015 Feb; 16():55. PubMed ID: 25886734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-way association extraction and visualization from biological text documents using hyper-graphs: applications to genetic association studies for diseases.
    Mukhopadhyay S; Palakal M; Maddu K
    Artif Intell Med; 2010 Jul; 49(3):145-54. PubMed ID: 20382004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery.
    Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q
    BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Human-like Mining and Constructing Reliable Genetic Association Database with Deep Reinforcement Learning.
    Wang H; Liu X; Tao Y; Ye W; Jin Q; Cohen WW; Xing EP
    Pac Symp Biocomput; 2019; 24():112-123. PubMed ID: 30864315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
    Gupta S; Ross KE; Tudor CO; Wu CH; Schmidt CJ; Vijay-Shanker K
    J Biomed Semantics; 2016 Apr; 7(1):9. PubMed ID: 27216254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Pathway Mining.
    Czarnecki JM; Shepherd AJ
    Methods Mol Biol; 2017; 1526():139-158. PubMed ID: 27896740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for mining information of co-expression network based on multi-cancers integrated data.
    Hou MX; Gao YL; Liu JX; Shang J; Zhu R; Yuan SS
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):155. PubMed ID: 31888692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTextMine: integrated text-mining system for large-scale knowledge extraction from the literature.
    Ren J; Li G; Ross K; Arighi C; McGarvey P; Rao S; Cowart J; Madhavan S; Vijay-Shanker K; Wu CH
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30576489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine.
    Singhal A; Simmons M; Lu Z
    PLoS Comput Biol; 2016 Nov; 12(11):e1005017. PubMed ID: 27902695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-stage deep learning approach for extracting entities and relationships from medical texts.
    Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P
    J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and analysis of co-occurrence networks with NetCutter.
    Müller H; Mancuso F
    PLoS One; 2008 Sep; 3(9):e3178. PubMed ID: 18781200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
    Eshleman R; Singh R
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloud-Based Phrase Mining and Analysis of User-Defined Phrase-Category Association in Biomedical Publications.
    Sigdel D; Kyi V; Zhang A; Setty SP; Liem DA; Shi Y; Wang X; Shen J; Wang W; Han J; Ping P
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.