BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32883271)

  • 21. Cloud-Based Phrase Mining and Analysis of User-Defined Phrase-Category Association in Biomedical Publications.
    Sigdel D; Kyi V; Zhang A; Setty SP; Liem DA; Shi Y; Wang X; Shen J; Wang W; Han J; Ping P
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using data-driven sublanguage pattern mining to induce knowledge models: application in medical image reports knowledge representation.
    Zhao Y; Fesharaki NJ; Liu H; Luo J
    BMC Med Inform Decis Mak; 2018 Jul; 18(1):61. PubMed ID: 29980203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomedical text mining and its applications in cancer research.
    Zhu F; Patumcharoenpol P; Zhang C; Yang Y; Chan J; Meechai A; Vongsangnak W; Shen B
    J Biomed Inform; 2013 Apr; 46(2):200-11. PubMed ID: 23159498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated curation of gene name normalization results using the Konstanz information miner.
    Zwick M
    J Biomed Inform; 2015 Feb; 53():58-64. PubMed ID: 25218035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Context-driven automatic subgraph creation for literature-based discovery.
    Cameron D; Kavuluru R; Rindflesch TC; Sheth AP; Thirunarayan K; Bodenreider O
    J Biomed Inform; 2015 Apr; 54():141-57. PubMed ID: 25661592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A text-mining technique for extracting gene-disease associations from the biomedical literature.
    Al-Mubaid H; Singh RK
    Int J Bioinform Res Appl; 2010; 6(3):270-86. PubMed ID: 20615835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CoCoScore: context-aware co-occurrence scoring for text mining applications using distant supervision.
    Junge A; Jensen LJ
    Bioinformatics; 2020 Jan; 36(1):264-271. PubMed ID: 31199464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A graph exploration method for identifying influential spreaders in complex networks.
    Salamanos N; Voudigari E; Yannakoudakis EJ
    Appl Netw Sci; 2017; 2(1):26. PubMed ID: 30443581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach.
    Rahimi M; Teimourpour B; Marashi SA
    Comput Biol Med; 2019 Nov; 114():103362. PubMed ID: 31561101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel social behavior-based algorithm for identification of influential users in social network.
    Mnasri W; Azaouzi M; Romdhane LB
    Appl Intell (Dordr); 2021; 51(10):7365-7383. PubMed ID: 34764589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mining literatures to discover novel multiple biological associations in a disease context.
    Faro A; Giordano D; Maiorana F
    Int J Data Min Bioinform; 2015; 12(2):224-56. PubMed ID: 26510304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A graph-based algorithm for mining multi-level patterns in genomic data.
    Lam WW; Chan KC; Chiu DK; Wong AK
    J Bioinform Comput Biol; 2010 Oct; 8(5):789-807. PubMed ID: 20981888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inferring Drug-Protein⁻Side Effect Relationships from Biomedical Text.
    Song M; Baek SH; Heo GE; Lee JH
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30791472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TransMiner: mining transitive associations among biological objects from text.
    Narayanasamy V; Mukhopadhyay S; Palakal M; Potter DA
    J Biomed Sci; 2004; 11(6):864-73. PubMed ID: 15591784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Data mining and predictive modeling of biomolecular network from biomedical literature databases.
    Hu X; Wu DD
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):251-63. PubMed ID: 17473318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constructing a Gene-Drug-Adverse Reactions Network and Inferring Potential Gene-Adverse Reactions Associations Using a Text Mining Approach.
    Sui M; Cui L
    Stud Health Technol Inform; 2017; 245():531-535. PubMed ID: 29295151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying the informativeness for biomedical literature summarization: An itemset mining method.
    Moradi M; Ghadiri N
    Comput Methods Programs Biomed; 2017 Jul; 146():77-89. PubMed ID: 28688492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unsupervised text mining for assessing and augmenting GWAS results.
    Ailem M; Role F; Nadif M; Demenais F
    J Biomed Inform; 2016 Apr; 60():252-9. PubMed ID: 26911523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Text Mining Pipeline Using Active and Deep Learning Aimed at Curating Information in Computational Neuroscience.
    Shardlow M; Ju M; Li M; O'Reilly C; Iavarone E; McNaught J; Ananiadou S
    Neuroinformatics; 2019 Jul; 17(3):391-406. PubMed ID: 30443819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.