These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 32883300)

  • 21. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering.
    Gupta D; Vashisth P; Bellare J
    Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds.
    Ren Y; Zhang C; Liu Y; Kong W; Yang X; Niu H; Qiang L; Yang H; Yang F; Wang C; Wang J
    ACS Biomater Sci Eng; 2024 Jan; 10(1):255-270. PubMed ID: 38118130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in additive manufacturing for bone tissue engineering scaffolds.
    Moreno Madrid AP; Vrech SM; Sanchez MA; Rodriguez AP
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():631-644. PubMed ID: 30948100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.
    Ma Y; Zhang B; Sun H; Liu D; Zhu Y; Zhu Q; Liu X
    Int J Nanomedicine; 2023; 18():293-305. PubMed ID: 36683596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D printing for bone regeneration: challenges and opportunities for achieving predictability.
    Ivanovski S; Breik O; Carluccio D; Alayan J; Staples R; Vaquette C
    Periodontol 2000; 2023 Oct; 93(1):358-384. PubMed ID: 37823472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.
    Wan Z; Zhang P; Liu Y; Lv L; Zhou Y
    Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications.
    Thangavel M; Elsen Selvam R
    ACS Biomater Sci Eng; 2022 Dec; 8(12):5060-5093. PubMed ID: 36415173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function.
    Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C
    Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Additive Manufacturing for Guided Bone Regeneration: A Perspective for Alveolar Ridge Augmentation.
    Rider P; Kačarević ŽP; Alkildani S; Retnasingh S; Schnettler R; Barbeck M
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30355988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering.
    Schipani R; Nolan DR; Lally C; Kelly DJ
    Connect Tissue Res; 2020 Mar; 61(2):174-189. PubMed ID: 31495233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional printing of clinical scale and personalized calcium phosphate scaffolds for alveolar bone reconstruction.
    Anderson M; Dubey N; Bogie K; Cao C; Li J; Lerchbacker J; Mendonça G; Kauffmann F; Bottino MC; Kaigler D
    Dent Mater; 2022 Mar; 38(3):529-539. PubMed ID: 35074166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-Dimensional Printing for Bone Tissue Engineering.
    Qu M; Wang C; Zhou X; Libanori A; Jiang X; Xu W; Zhu S; Chen Q; Sun W; Khademhosseini A
    Adv Healthc Mater; 2021 Jun; 10(11):e2001986. PubMed ID: 33876580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of Bone Scaffold Porosity Distributions.
    Poh PSP; Valainis D; Bhattacharya K; van Griensven M; Dondl P
    Sci Rep; 2019 Jun; 9(1):9170. PubMed ID: 31235704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft.
    Bisht B; Hope A; Mukherjee A; Paul MK
    Ann Biomed Eng; 2021 Apr; 49(4):1128-1150. PubMed ID: 33674908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and properties of 3D scaffolds for bone tissue engineering.
    Gómez S; Vlad MD; López J; Fernández E
    Acta Biomater; 2016 Sep; 42():341-350. PubMed ID: 27370904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design, evaluation, and optimization of 3D printed truss scaffolds for bone tissue engineering.
    Shirzad M; Zolfagharian A; Matbouei A; Bodaghi M
    J Mech Behav Biomed Mater; 2021 Aug; 120():104594. PubMed ID: 34029944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.