BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 32883317)

  • 21. Survival of syngeneic and allogeneic iPSC-derived neural precursors after spinal grafting in minipigs.
    Strnadel J; Carromeu C; Bardy C; Navarro M; Platoshyn O; Glud AN; Marsala S; Kafka J; Miyanohara A; Kato T; Tadokoro T; Hefferan MP; Kamizato K; Yoshizumi T; Juhas S; Juhasova J; Ho CS; Kheradmand T; Chen P; Bohaciakova D; Hruska-Plochan M; Todd AJ; Driscoll SP; Glenn TD; Pfaff SL; Klima J; Ciacci J; Curtis E; Gage FH; Bui J; Yamada K; Muotri AR; Marsala M
    Sci Transl Med; 2018 May; 10(440):. PubMed ID: 29743351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic spinal cord injury functionally repaired by direct implantation of encapsulated hair-follicle-associated pluripotent (HAP) stem cells in a mouse model: Potential for clinical regenerative medicine.
    Obara K; Shirai K; Hamada Y; Arakawa N; Yamane M; Takaoka N; Aki R; Hoffman RM; Amoh Y
    PLoS One; 2022; 17(1):e0262755. PubMed ID: 35085322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.
    Emgård M; Piao J; Aineskog H; Liu J; Calzarossa C; Odeberg J; Holmberg L; Samuelsson EB; Bezubik B; Vincent PH; Falci SP; Seiger Å; Åkesson E; Sundström E
    Exp Neurol; 2014 Mar; 253():138-45. PubMed ID: 24412492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic effects of self-assembling peptide and neural stem/progenitor cells to promote tissue repair and forelimb functional recovery in cervical spinal cord injury.
    Iwasaki M; Wilcox JT; Nishimura Y; Zweckberger K; Suzuki H; Wang J; Liu Y; Karadimas SK; Fehlings MG
    Biomaterials; 2014 Mar; 35(9):2617-29. PubMed ID: 24406216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors.
    All AH; Gharibani P; Gupta S; Bazley FA; Pashai N; Chou BK; Shah S; Resar LM; Cheng L; Gearhart JD; Kerr CL
    PLoS One; 2015; 10(1):e0116933. PubMed ID: 25635918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adult Neural Progenitor Cells Transplanted into Spinal Cord Injury Differentiate into Oligodendrocytes, Enhance Myelination, and Contribute to Recovery.
    Sankavaram SR; Hakim R; Covacu R; Frostell A; Neumann S; Svensson M; Brundin L
    Stem Cell Reports; 2019 May; 12(5):950-966. PubMed ID: 31031190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue.
    Sundberg M; Andersson PH; Åkesson E; Odeberg J; Holmberg L; Inzunza J; Falci S; Öhman J; Suuronen R; Skottman H; Lehtimäki K; Hovatta O; Narkilahti S; Sundström E
    Cell Transplant; 2011; 20(2):177-91. PubMed ID: 20875224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrathecal Transplantation of Embryonic Stem Cell-Derived Spinal GABAergic Neural Precursor Cells Attenuates Neuropathic Pain in a Spinal Cord Injury Rat Model.
    Hwang I; Hahm SC; Choi KA; Park SH; Jeong H; Yea JH; Kim J; Hong S
    Cell Transplant; 2016; 25(3):593-607. PubMed ID: 26407027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.
    All AH; Bazley FA; Gupta S; Pashai N; Hu C; Pourmorteza A; Kerr C
    PLoS One; 2012; 7(10):e47645. PubMed ID: 23091637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice.
    Kong D; Feng B; Amponsah AE; He J; Guo R; Liu B; Du X; Liu X; Zhang S; Lv F; Ma J; Cui H
    Stem Cell Res Ther; 2021 Mar; 12(1):172. PubMed ID: 33706803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury.
    Zhou X; Shi G; Fan B; Cheng X; Zhang X; Wang X; Liu S; Hao Y; Wei Z; Wang L; Feng S
    Int J Nanomedicine; 2018; 13():6265-6277. PubMed ID: 30349249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury.
    Gong Z; Xia K; Xu A; Yu C; Wang C; Zhu J; Huang X; Chen Q; Li F; Liang C
    Curr Stem Cell Res Ther; 2020; 15(4):321-331. PubMed ID: 31441733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prior Treatment with Anti-High Mobility Group Box-1 Antibody Boosts Human Neural Stem Cell Transplantation-Mediated Functional Recovery After Spinal Cord Injury.
    Uezono N; Zhu Y; Fujimoto Y; Yasui T; Matsuda T; Nakajo M; Abematsu M; Setoguchi T; Mori S; Takahashi HK; Komiya S; Nishibori M; Nakashima K
    Stem Cells; 2018 May; 36(5):737-750. PubMed ID: 29517828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue-type plasminogen activator-primed human iPSC-derived neural progenitor cells promote motor recovery after severe spinal cord injury.
    Shiga Y; Shiga A; Mesci P; Kwon H; Brifault C; Kim JH; Jeziorski JJ; Nasamran C; Ohtori S; Muotri AR; Gonias SL; Campana WM
    Sci Rep; 2019 Dec; 9(1):19291. PubMed ID: 31848365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats.
    Amemori T; Ruzicka J; Romanyuk N; Jhanwar-Uniyal M; Sykova E; Jendelova P
    Stem Cell Res Ther; 2015 Dec; 6():257. PubMed ID: 26696415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transplantation of neural progenitor cells generated from human urine epithelial cell-derived induced pluripotent stem cells improves neurological functions in rats with stroke.
    Wu R; Luo S; Yang H; Hu X; Lin A; Pan G; Zhong X; Li Z
    Discov Med; 2020; 29(156):53-64. PubMed ID: 32598863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progress in the Use of Induced Pluripotent Stem Cell-Derived Neural Cells for Traumatic Spinal Cord Injuries in Animal Populations: Meta-Analysis and Review.
    Ramotowski C; Qu X; Villa-Diaz LG
    Stem Cells Transl Med; 2019 Jul; 8(7):681-693. PubMed ID: 30903654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord.
    Yasuda A; Tsuji O; Shibata S; Nori S; Takano M; Kobayashi Y; Takahashi Y; Fujiyoshi K; Hara CM; Miyawaki A; Okano HJ; Toyama Y; Nakamura M; Okano H
    Stem Cells; 2011 Dec; 29(12):1983-94. PubMed ID: 22028197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat.
    Amemori T; Romanyuk N; Jendelova P; Herynek V; Turnovcova K; Prochazka P; Kapcalova M; Cocks G; Price J; Sykova E
    Stem Cell Res Ther; 2013 Jun; 4(3):68. PubMed ID: 23759119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury.
    Zheng Y; Gallegos CM; Xue H; Li S; Kim DH; Zhou H; Xia X; Liu Y; Cao Q
    Cells; 2022 Sep; 11(17):. PubMed ID: 36078173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.