These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32883427)
1. Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Wood AKM; Walker C; Lee WS; Urban M; Hammond-Kosack KE Fungal Biol; 2020 Sep; 124(9):753-765. PubMed ID: 32883427 [TBL] [Abstract][Full Text] [Related]
2. Fusarium graminearum rapid alkalinization factor peptide negatively regulates plant immunity and cell growth via the FERONIA receptor kinase. Wang Y; Liu X; Yuan B; Chen X; Zhao H; Ali Q; Zheng M; Tan Z; Yao H; Zheng S; Wu J; Xu J; Shi J; Wu H; Gao X; Gu Q Plant Biotechnol J; 2024 Jul; 22(7):1800-1811. PubMed ID: 38344883 [TBL] [Abstract][Full Text] [Related]
3. Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. Cuzick A; Urban M; Hammond-Kosack K New Phytol; 2008; 177(4):990-1000. PubMed ID: 18179606 [TBL] [Abstract][Full Text] [Related]
4. Rocher F; Alouane T; Philippe G; Martin ML; Label P; Langin T; Bonhomme L Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163834 [No Abstract] [Full Text] [Related]
5. Genome-wide search and gene expression studies reveal candidate effectors with a role in pathogenicity and virulence in Fatima M; Anjum Bhat H; Rebekah N; Murugasamy S; Makandar R Mycologia; 2024; 116(5):708-728. PubMed ID: 39110876 [No Abstract] [Full Text] [Related]
6. Expression of a Structural Protein of the Mycovirus FgV-ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum. Bormann J; Heinze C; Blum C; Mentges M; Brockmann A; Alder A; Landt SK; Josephson B; Indenbirken D; Spohn M; Plitzko B; Loesgen S; Freitag M; Schäfer W J Virol; 2018 Sep; 92(17):. PubMed ID: 29899100 [TBL] [Abstract][Full Text] [Related]
7. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection. Quarantin A; Glasenapp A; Schäfer W; Favaron F; Sella L Plant Physiol Biochem; 2016 Dec; 109():220-229. PubMed ID: 27744264 [TBL] [Abstract][Full Text] [Related]
8. Role of the XylA gene, encoding a cell wall degrading enzyme, during common wheat, durum wheat and barley colonization by Fusarium graminearum. Tini F; Beccari G; Benfield AH; Gardiner DM; Covarelli L Fungal Genet Biol; 2020 Mar; 136():103318. PubMed ID: 31841669 [TBL] [Abstract][Full Text] [Related]
9. Involvement of Fungal Pectin Methylesterase Activity in the Interaction Between Fusarium graminearum and Wheat. Sella L; Castiglioni C; Paccanaro MC; Janni M; Schäfer W; D'Ovidio R; Favaron F Mol Plant Microbe Interact; 2016 Apr; 29(4):258-67. PubMed ID: 26713352 [TBL] [Abstract][Full Text] [Related]
10. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Harris LJ; Balcerzak M; Johnston A; Schneiderman D; Ouellet T Fungal Biol; 2016 Jan; 120(1):111-23. PubMed ID: 26693688 [TBL] [Abstract][Full Text] [Related]
11. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum. Lu S; Edwards MC Phytopathology; 2018 Apr; 108(4):510-520. PubMed ID: 29117786 [TBL] [Abstract][Full Text] [Related]
12. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Li Y; Wang C; Liu W; Wang G; Kang Z; Kistler HC; Xu JR Mol Plant Microbe Interact; 2011 Apr; 24(4):487-96. PubMed ID: 21138346 [TBL] [Abstract][Full Text] [Related]
13. Functional Analysis of Qi PF; Zhang YZ; Liu CH; Chen Q; Guo ZR; Wang Y; Xu BJ; Jiang YF; Zheng T; Gong X; Luo CH; Wu W; Kong L; Deng M; Ma J; Lan XJ; Jiang QT; Wei YM; Wang JR; Zheng YL Toxins (Basel); 2019 Jan; 11(2):. PubMed ID: 30678154 [TBL] [Abstract][Full Text] [Related]
14. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. Brown NA; Antoniw J; Hammond-Kosack KE PLoS One; 2012; 7(4):e33731. PubMed ID: 22493673 [TBL] [Abstract][Full Text] [Related]
15. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
16. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum. Perochon A; Jianguang J; Kahla A; Arunachalam C; Scofield SR; Bowden S; Wallington E; Doohan FM Plant Physiol; 2015 Dec; 169(4):2895-906. PubMed ID: 26508775 [TBL] [Abstract][Full Text] [Related]
17. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum. Qin J; Wu M; Zhou S Curr Genet; 2020 Jun; 66(3):517-529. PubMed ID: 31728616 [TBL] [Abstract][Full Text] [Related]
18. FcRav2, a gene with a ROGDI domain involved in Fusarium head blight and crown rot on durum wheat caused by Fusarium culmorum. Spanu F; Scherm B; Camboni I; Balmas V; Pani G; Oufensou S; Macciotta N; Pasquali M; Migheli Q Mol Plant Pathol; 2018 Mar; 19(3):677-688. PubMed ID: 28322011 [TBL] [Abstract][Full Text] [Related]
19. Genomic analysis of host-pathogen interaction between Fusarium graminearum and wheat during early stages of disease development. Goswami RS; Xu JR; Trail F; Hilburn K; Kistler HC Microbiology (Reading); 2006 Jun; 152(Pt 6):1877-1890. PubMed ID: 16735750 [TBL] [Abstract][Full Text] [Related]
20. Deletion of the benzoxazinoid detoxification gene NAT1 in Fusarium graminearum reduces deoxynivalenol in spring wheat. Baldwin T; Baldwin S; Klos K; Bregitzer P; Marshall J PLoS One; 2019; 14(7):e0214230. PubMed ID: 31299046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]