BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 32883710)

  • 1. Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia.
    Sangari S; Perez MA
    J Neurosci; 2020 Nov; 40(46):8831-8841. PubMed ID: 32883710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imbalanced Corticospinal and Reticulospinal Contributions to Spasticity in Humans with Spinal Cord Injury.
    Sangari S; Perez MA
    J Neurosci; 2019 Oct; 39(40):7872-7881. PubMed ID: 31413076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury.
    Bunday KL; Perez MA
    J Neurophysiol; 2012 May; 107(10):2901-11. PubMed ID: 22357796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reticulospinal Contributions to Gross Hand Function after Human Spinal Cord Injury.
    Baker SN; Perez MA
    J Neurosci; 2017 Oct; 37(40):9778-9784. PubMed ID: 28871033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing a Novel Wearable Device for Motor Recovery of the Elbow Extensor Triceps Brachii in Chronic Spinal Cord Injury.
    Germann M; Baker SN
    eNeuro; 2023 Jul; 10(7):. PubMed ID: 37460228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans.
    Martin PG; Smith JL; Butler JE; Gandevia SC; Taylor JL
    J Neurosci; 2006 May; 26(18):4796-802. PubMed ID: 16672652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.
    Bunday KL; Oudega M; Perez MA
    PLoS One; 2013; 8(10):e76747. PubMed ID: 24146921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury.
    Vastano R; Perez MA
    J Neurophysiol; 2020 Feb; 123(2):454-461. PubMed ID: 31461361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task.
    Vernillo G; Temesi J; Martin M; Krüger RL; Millet GY
    J Neurophysiol; 2020 Sep; 124(3):763-773. PubMed ID: 32755359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of coil orientation on motor-evoked potentials in humans with tetraplegia.
    Jo HJ; Di Lazzaro V; Perez MA
    J Physiol; 2018 Oct; 596(20):4909-4921. PubMed ID: 29923194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticospinal inhibition investigated in relation to upper extremity motor function in cervical spinal cord injury.
    Arora T; Liu J; Mohan A; Li X; O'laughlin K; Bennett T; Nemunaitis G; Bethoux F; Pundik S; Forrest G; Kirshblum S; Kilgore K; Bryden A; Kristi Henzel M; Wang X; Baker K; Brihmat N; Bayram M; Plow EB
    Clin Neurophysiol; 2024 May; 161():188-197. PubMed ID: 38520799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arm posture-dependent changes in corticospinal excitability are largely spinal in origin.
    Nuzzo JL; Trajano GS; Barry BK; Gandevia SC; Taylor JL
    J Neurophysiol; 2016 Apr; 115(4):2076-82. PubMed ID: 26864764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The assessment of biceps voluntary activation with transcranial magnetic stimulation in individuals with tetraplegia.
    Roumengous T; Peterson CL
    Restor Neurol Neurosci; 2022; 40(3):169-184. PubMed ID: 35848044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group III and IV muscle afferents differentially affect the motor cortex and motoneurones in humans.
    Martin PG; Weerakkody N; Gandevia SC; Taylor JL
    J Physiol; 2008 Mar; 586(5):1277-89. PubMed ID: 17884925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study.
    Dongés SC; Boswell-Ruys CL; Butler JE; Taylor JL
    Spinal Cord; 2019 Sep; 57(9):796-804. PubMed ID: 31086274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles.
    Zijdewind I; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2006 Nov; 175(3):526-35. PubMed ID: 16924489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW; Gale LH; Buckle NCM; Button DC
    Physiol Rep; 2017 Apr; 5(8):. PubMed ID: 28455452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticospinal excitability to the biceps and triceps brachii during forward and backward arm cycling is direction- and phase-dependent.
    Nippard AP; Lockyer EJ; Button DC; Power KE
    Appl Physiol Nutr Metab; 2020 Jan; 45(1):72-80. PubMed ID: 31167082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.