These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32884038)

  • 1. Self-powered, ultrasensitive, room temperature humidity sensors using SnS
    Rambabu A; Singh DK; Pant R; Nanda KK; Krupanidhi SB
    Sci Rep; 2020 Sep; 10(1):14611. PubMed ID: 32884038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Self-Assembled SnS
    Zhang D; Zong X; Wu Z; Zhang Y
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32631-32639. PubMed ID: 30176720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Self-Assembly MoS
    Lin J; Fang H; Tan X; Sun B; Wang Z; Deng H; Liu H; Tang Z; Liao G; Shi T
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46368-46378. PubMed ID: 31714054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Sensitivity, Humidity-Independent, Flexible NO
    Huang Y; Jiao W; Chu Z; Wang S; Chen L; Nie X; Wang R; He X
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):997-1004. PubMed ID: 31825202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Powered, Highly Sensitive, and Flexible Humidity Sensor Based on Carboxymethyl Cellulose for Multifunctional Applications.
    Dou Y; Tang C; Lu Y
    Langmuir; 2023 Dec; 39(48):17436-17445. PubMed ID: 37976429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D/2D heterojunction of g-C
    Sun Q; Hao J; Zheng S; Wan P; Li J; Zhang D; Li Y; Wang T; Wang Y
    Nanotechnology; 2020 Jun; 31(42):425502. PubMed ID: 32590366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Selective Self-Powered Organic-Inorganic Hybrid Heterojunction of a Halide Perovskite and InGaZnO NO
    Vijjapu MT; Surya SG; He JH; Salama KN
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40460-40470. PubMed ID: 34415137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered humidity sensors based on zero-dimensional perovskite-like structures with fast response and high stability.
    Sharma SK; Tiwari A; Arjumand M; Yella A
    Nanoscale; 2024 Jun; 16(23):11028-11037. PubMed ID: 38804981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Sensitive Self-Powered Humidity Sensor Based on a TaS
    Yang H; He J; Yan J; Li H; Bai Y; Wang Q; Yan H; Yin S
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):33077-33086. PubMed ID: 37385961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile and Cost-Effective Fabrication of Highly Sensitive, Fast-Response Flexible Humidity Sensors Enabled by Laser-Induced Graphene.
    Liu S; Chen R; Chen R; Jiang C; Zhang C; Chen D; Zhou W; Chen S; Luo T
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38049206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing.
    Zhang D; Sun Y; Li P; Zhang Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14142-9. PubMed ID: 27192399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-powered, flexible and remote-controlled breath monitor based on TiO
    Xiao Y; Shen D; Zou G; Wu A; Liu L; Duley WW; Zhou YN
    Nanotechnology; 2019 Aug; 30(32):325503. PubMed ID: 31013482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive Room-Temperature NO
    Saggu IS; Singh S; Chen K; Xuan Z; Swihart MT; Sharma S
    ACS Sens; 2023 Jan; 8(1):243-253. PubMed ID: 36647806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Sensitive Self-Powered Biomedical Applications Using Triboelectric Nanogenerator.
    Kamilya T; Park J
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Graphene Oxide/Polyelectrolyte Multilayers for Fast Resistive Humidity Sensing.
    Noh W; Go Y; An H
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SnS
    Sun Q; Wang J; Hao J; Zheng S; Wan P; Wang T; Fang H; Wang Y
    Nanoscale; 2019 Aug; 11(29):13741-13749. PubMed ID: 31192336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system.
    Hu L; Zhong T; Long Z; Liang S; Xing L; Xue X
    Nanotechnology; 2023 Feb; 34(19):. PubMed ID: 36745907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyimide-Sputtered and Polymerized Films with Ultrahigh Moisture Sensitivity for Respiratory Monitoring and Contactless Sensing.
    Wang N; Tong J; Wang J; Wang Q; Chen S; Sheng B
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11842-11853. PubMed ID: 35143181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive, room temperature operated gold nanowire-based humidity sensor: adoptable for breath sensing.
    Adhyapak PV; Kasabe AM; Bang AD; Ambekar J; Kulkarni SK
    RSC Adv; 2021 Dec; 12(2):1157-1164. PubMed ID: 35425134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring.
    Su Y; Liu Y; Li W; Xiao X; Chen C; Lu H; Yuan Z; Tai H; Jiang Y; Zou J; Xie G; Chen J
    Mater Horiz; 2023 Mar; 10(3):842-851. PubMed ID: 36689243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.