BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32884710)

  • 1. Valorization of spent black tea by recovery of antioxidant polyphenolic compounds: Subcritical solvent extraction and microencapsulation.
    Rajapaksha DSW; Shimizu N
    Food Sci Nutr; 2020 Aug; 8(8):4297-4307. PubMed ID: 32884710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot-scale extraction of polyphenols from spent black tea by semi-continuous subcritical solvent extraction.
    Rajapaksha S; Shimizu N
    Food Chem X; 2022 Mar; 13():100200. PubMed ID: 35498997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microencapsulation of phenolic compounds extracted from soybean seed coats by spray-drying.
    Bergesse AE; Asensio CM; Quiroga PR; Ryan LC; Grosso NR; Nepote V
    J Food Sci; 2023 Nov; 88(11):4457-4471. PubMed ID: 37799104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying.
    Saikia S; Mahnot NK; Mahanta CL
    Food Chem; 2015 Mar; 171():144-52. PubMed ID: 25308654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microencapsulation of Saffron Petal Phenolic Extract: Their Characterization, In Vitro Gastrointestinal Digestion, and Storage Stability.
    Ahmadian Z; Niazmand R; Pourfarzad A
    J Food Sci; 2019 Oct; 84(10):2745-2757. PubMed ID: 31546290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Characterization of Functional Starch-Based Films Incorporating Free or Microencapsulated Spent Black Tea Extract.
    Rajapaksha SW; Shimizu N
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green Tea Leaves Extract: Microencapsulation, Physicochemical and Storage Stability Study.
    Zokti JA; Sham Baharin B; Mohammed AS; Abas F
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27472310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of white tea extract in nano-liposomes: optimization, characterization, and stability.
    Ahmadi E; Elhamirad AH; Mollania N; Saeidi Asl MR; Pedramnia A
    J Sci Food Agric; 2022 Mar; 102(5):2050-2060. PubMed ID: 34562028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidative Polyphenols of Canola Meal Extracted by High Pressure: Impact of Temperature and Solvents.
    Nandasiri R; Eskin NAM; Thiyam-Höllander U
    J Food Sci; 2019 Nov; 84(11):3117-3128. PubMed ID: 31663155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray drying encapsulation of a native plant extract rich in phenolic compounds with combinations of maltodextrin and non-conventional wall materials.
    Navarro-Flores MJ; Ventura-Canseco LMC; Meza-Gordillo R; Ayora-Talavera TDR; Abud-Archila M
    J Food Sci Technol; 2020 Nov; 57(11):4111-4122. PubMed ID: 33071332
    [No Abstract]   [Full Text] [Related]  

  • 11. Optimization of Surfactant-Mediated, Ultrasonic-assisted Extraction of Antioxidant Polyphenols from Rattan Tea (
    Li F; Raza A; Wang YW; Xu XQ; Chen GH
    Pharmacogn Mag; 2017; 13(51):446-453. PubMed ID: 28839370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of solvent type on ultrasound-assisted extraction of antioxidant compounds from Ficaria kochii: Optimization by response surface methodology.
    Shahidi SA
    Food Chem Toxicol; 2022 May; 163():112981. PubMed ID: 35367535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microencapsulation of
    Osamede Airouyuwa J; Kaewmanee T
    Food Sci Technol Int; 2019 Sep; 25(6):533-543. PubMed ID: 31014107
    [No Abstract]   [Full Text] [Related]  

  • 14. Ultrasound-assisted extraction of functional compound from mulberry (Morus alba L.) leaf using response surface methodology and effect of microencapsulation by spray drying on quality of optimized extract.
    Insang S; Kijpatanasilp I; Jafari S; Assatarakul K
    Ultrason Sonochem; 2022 Jan; 82():105806. PubMed ID: 34991963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcritical Fluid Extraction of Antioxidant Phenolic Compounds from Pistachio (Pistacia vera L.) Nuts: Experiments, Modeling, and Optimization.
    Bodoira R; Velez A; Rovetto L; Ribotta P; Maestri D; Martínez M
    J Food Sci; 2019 May; 84(5):963-970. PubMed ID: 31012966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray-Drying Microencapsulation of
    Remígio MSDN; Greco T; Silva Júnior JOC; Converti A; Ribeiro-Costa RM; Rossi A; Barbosa WLR
    Pharmaceutics; 2024 Apr; 16(4):. PubMed ID: 38675149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcritical water extraction of bioactive phenolic compounds from distillery stillage.
    Mikucka W; Zielinska M; Bulkowska K; Witonska I
    J Environ Manage; 2022 Sep; 318():115548. PubMed ID: 35753130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology.
    Hammi KM; Jdey A; Abdelly C; Majdoub H; Ksouri R
    Food Chem; 2015 Oct; 184():80-9. PubMed ID: 25872429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Phenolic Production and Antioxidant Activity from Buckwheat Leaves by Subcritical Water Extraction.
    Kim DS; Kim MB; Lim SB
    Prev Nutr Food Sci; 2017 Dec; 22(4):345-352. PubMed ID: 29333388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microencapsulation by spray-drying and freeze-drying of extract of phenolic compounds obtained from ciriguela peel.
    da Silva Júnior ME; Araújo MVRL; Martins ACS; Dos Santos Lima M; da Silva FLH; Converti A; Maciel MIS
    Sci Rep; 2023 Sep; 13(1):15222. PubMed ID: 37709786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.