BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32885064)

  • 1. Physiological response of metal tolerance and detoxification in castor (
    Panda D; Mandal L; Barik J; Padhan B; Bisoi SS
    Heliyon; 2020 Aug; 6(8):e04567. PubMed ID: 32885064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit.
    Panda D; Mandal L; Barik J
    Int J Phytoremediation; 2020; 22(11):1195-1203. PubMed ID: 32356449
    [No Abstract]   [Full Text] [Related]  

  • 3. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil.
    Panda D; Panda D; Padhan B; Biswas M
    Int J Phytoremediation; 2018 May; 20(6):538-544. PubMed ID: 29688052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alleviating lead-induced phytotoxicity and enhancing the phytoremediation of castor bean (
    Bamagoos AA; Mallhi ZI; El-Esawi MA; Rizwan M; Ahmad A; Hussain A; Alharby HF; Alharbi BM; Ali S
    Int J Phytoremediation; 2022; 24(9):933-944. PubMed ID: 34634959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suitability of Brahmi (
    Panda D; Barik JR; Barik J; Behera PK; Dash D
    Int J Phytoremediation; 2021; 23(1):72-79. PubMed ID: 32657139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation.
    Rai UN; Pandey K; Sinha S; Singh A; Saxena R; Gupta DK
    Environ Int; 2004 May; 30(3):293-300. PubMed ID: 14987858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions.
    Palanivel TM; Pracejus B; Victor R
    Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of various amendments for amelioration of fly-ash toxicity: growth performance and metal composition of Cassia siamea Lamk.
    Tripathi RD; Vajpayee P; Singh N; Rai UN; Kumar A; Ali MB; Kumar B; Yunus M
    Chemosphere; 2004 Mar; 54(11):1581-8. PubMed ID: 14675837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling phytoremediation efficiency and detoxification to assess the role of P in the Cu tolerant Ricinus communis L.
    Zhou X; Wang S; Liu Y; Huang G; Yao S; Hu H
    Chemosphere; 2020 May; 247():125965. PubMed ID: 32069730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils.
    Kiran BR; Prasad MNV
    Ecotoxicol Environ Saf; 2019 Nov; 183():109574. PubMed ID: 31442801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability.
    Gupta AK; Sinha S
    J Hazard Mater; 2006 Aug; 136(2):371-8. PubMed ID: 16434138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil.
    Boda RK; Majeti NVP; Suthari S
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19955-19964. PubMed ID: 28689290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth, yield and metal residues in Solanum melongena grown in fly ash amended soils.
    Gond DP; Singh S; Pal A; Tewary BK
    J Environ Biol; 2013 May; 34(3):539-44. PubMed ID: 24617139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil.
    Dwivedi S; Tripathi RD; Srivastava S; Mishra S; Shukla MK; Tiwari KK; Singh R; Rai UN
    Chemosphere; 2007 Feb; 67(1):140-51. PubMed ID: 17166555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth, biochemical, and antioxidant response of pot marigold (
    Varshney A; Dahiya P; Mohan S
    Int J Phytoremediation; 2023; 25(1):115-124. PubMed ID: 35450480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.
    Singh JS; Pandey VC
    Ecotoxicol Environ Saf; 2013 Mar; 89():43-51. PubMed ID: 23260239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil.
    Bauddh K; Singh RP
    Ecotoxicol Environ Saf; 2012 Nov; 85():13-22. PubMed ID: 22959315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.